
1070 NARC,PRODUCT

5.123 disjoint

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from alldifferent.

Constraint disjoint(VARIABLES1, VARIABLES2)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
Each variable of the collection VARIABLES1 should take a value that is distinct from all

the values assigned to the variables of the collection VARIABLES2.

Example (〈1, 9, 1, 5〉 , 〈2, 7, 7, 0, 6, 8〉)

In this example, values 1, 5, 9 are used by the variables of VARIABLES1 and values

0, 2, 6, 7, 8 by the variables of VARIABLES2. Since there is no intersection between the

two previous sets of values the disjoint constraint holds.

All solutions Figure 5.275 gives all solutions to the following non ground instance of the disjoint

constraint: U1 ∈ [0..2], U2 ∈ [1..2], U3 ∈ [1..2], V1 ∈ [0..1], V2 ∈ [1..2],
disjoint(〈U1, U2, U3〉, 〈V1, V2〉).

¬ (〈0,2,2〉, 〈1, 1〉)
­ (〈1,1,1〉, 〈0, 2〉)
® (〈2,2,2〉, 〈0, 1〉)
¯ (〈2,2,2〉, 〈1, 1〉)

Figure 5.275: All solutions corresponding to the non ground example of the disjoint

constraint of the All solutions slot

Typical |VARIABLES1| > 1
|VARIABLES2| > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

All solutions
Example of all solutions for a non ground instance of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000315 1071

Symmetries • Arguments are permutable w.r.t. permutation (VARIABLES1, VARIABLES2).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• An occurrence of a value of VARIABLES1.var can be replaced by any value of

VARIABLES1.var.

• An occurrence of a value of VARIABLES2.var can be replaced by any value of

VARIABLES2.var.

• All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var

can be swapped; all occurrences of a value in VARIABLES1.var or

VARIABLES2.var can be renamed to any unused value.

Arg. properties
• Contractible wrt. VARIABLES1.

• Contractible wrt. VARIABLES2.

Remark Despite the fact that this is not an uncommon constraint, it can not be modelled in a compact

way neither with a disequality constraint (i.e., two given variables have to take distinct

values) nor with the alldifferent constraint. The disjoint constraint can bee seen as a

special case of the common(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2) constraint

where NCOMMON1 and NCOMMON2 are both set to 0.

MiniZinc (http://www.minizin
.org/) has a disjoint constraint between two set

variables rather than between two collections of variables.

Algorithm Let us note:

• n1 the minimum number of distinct values taken by the variables of the collection

VARIABLES1.

• n2 the minimum number of distinct values taken by the variables of the collection

VARIABLES2.

• n12 the maximum number of distinct values taken by the union of the variables of

VARIABLES1 and VARIABLES2.

One invariant to maintain for the disjoint constraint is n1 + n2 ≤ n12. A lower bound

of n1 and n2 can be obtained by using the algorithms provided in [27, 40]. An exact upper

bound of n12 can be computed by using a bipartite matching algorithm.

Used in k disjoint.

See also generalisation: disjoint tasks (variable replaced by task).

implies: alldifferent on intersection, lex different.

system of constraints: k disjoint.

Keywords characteristic of a constraint: disequality, automaton, automaton with array of counters.

constraint type: value constraint.

filtering: bipartite matching.

modelling: empty intersection.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.minizinc.org/

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1072 NARC,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NARC= 0

Graph model PRODUCT is used in order to generate the arcs of the graph between all variables of

VARIABLES1 and all variables of VARIABLES2. Since we use the graph property NARC

= 0 the final graph will be empty. Figure 5.276 shows the initial graph associated with the

Example slot. Since we use the NARC = 0 graph property the final graph is empty.

VARIABLES1

VARIABLES2

1

1234 56

234

Figure 5.276: Initial graph of the disjoint constraint (the final graph is empty)

Signature Since 0 is the smallest number of arcs of the final graph we can rewrite NARC = 0 to

NARC ≤ 0. This leads to simplify NARC to NARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20000315 1073

Automaton Figure 5.277 depicts the automaton associated with the disjoint constraint. To each

variable VAR1i of the collection VARIABLES1 corresponds a signature variable Si that is

equal to 0. To each variable VAR2i of the collection VARIABLES2 corresponds a signature

variable Si+|VARIABLES1| that is equal to 1.

arith or(C,D,<, 2)

s

{

C[]← 0,
D[]← 0

}

t

0,
{C[VAR1i]← C[VAR1i] + 1}

1,
{D[VAR2i]← D[VAR2i] + 1}

1,
{D[VAR2i]← D[VAR2i] + 1}

Figure 5.277: Automaton of the disjoint(VARIABLES1, VARIABLES2) constraint,

where state s handles variables of the collection VARIABLES1 and state t handles vari-

ables of the collection VARIABLES2

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

