
1118 NARC,PRODUCT ; AUTOMATON

5.137 elem

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from element.

Constraint elem(ITEM, TABLE)

Usual name element

Synonyms nth, array.

Arguments ITEM : collection(index−dvar, value−dvar)
TABLE : collection(index−int, value−dvar)

Restrictions required(ITEM, [index, value])
ITEM.index ≥ 1
ITEM.index ≤ |TABLE|
|ITEM| = 1
|TABLE| > 0
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose ITEM is equal to one of the entries of the table TABLE.

Example













〈index− 3 value− 2〉 ,

〈

index− 1 value− 6,
index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉













The elem constraint holds since its first argument ITEM corresponds to the third

item of the TABLE collection.

Typical |TABLE| > 1
range(TABLE.value) > 1

Symmetries • Items of TABLE are permutable.

• All occurrences of two distinct values in ITEM.value or TABLE.value can be

swapped; all occurrences of a value in ITEM.value or TABLE.value can be

renamed to any unused value.

Arg. properties
Functional dependency: ITEM.value determined by ITEM.index and TABLE.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).



20030820 1119

Usage Makes the link between the discrete decision variable INDEX and the variable VALUE ac-

cording to a given table of values TABLE. We now give five typical uses of the elem

constraint.

1. In some problems we may have to represent a function y = f(x) (with x ∈ [1, m]).
In this context we generate the following elem constraint where INDEX is a domain

variable taking its values in {1, 2, . . . ,m}:

elem















〈

index− x value− y
〉

,

〈

index− 1 value− f(1),
index− 2 value− f(2),

.

..

index−m value− f(m)

〉















1 2 3 4

2

3

4

5

6

7

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

1

8

27

x

y

Figure 5.294: y = x3 (1 ≤ x ≤ 3)

As an example, consider the problem of finding the smallest integer that can be de-


Usage
Typical usage of the constraint.



1120 NARC,PRODUCT ; AUTOMATON

composed in two different ways in the sum of two cubes [202]. The elem constraint

can be used for representing the function y = x3 (Figure 5.294). The unique solution

1729 = 123 + 13 = 103 + 93 can be obtained by the following set of constraints:














































































elem(〈index− x1 value− y1〉,
〈index− 1 value− 1, index− 2 value− 8, . . . , index− 20 value− 8000〉)

elem(〈index− x2 value− y2〉,
〈index− 1 value− 1, index− 2 value− 8, . . . , index− 20 value− 8000〉)

elem(〈index− x3 value− y3〉,
〈index− 1 value− 1, index− 2 value− 8, . . . , index− 20 value− 8000〉)

elem(〈index− x4 value− y4〉,
〈index− 1 value− 1, index− 2 value− 8, . . . , index− 20 value− 8000〉)

y1 + y2 = y3 + y4
x1 < x2

x3 < x4

x1 < x3

The last three inequalities constraints in the conjunction are used for breaking sym-

metries. The constraints x1 < x2 and x3 < x4 respectively order the pairs of

variables (x1, x2) and (x3, x4) from which the sums x3

1 + x3

2 and x3

3 + x3

4 are

generated. Finally the inequality x1 < x3 enforces a lexicographic ordering between

the two pairs of variables (x1, x2) and (x3, x4).

2. In some optimisation problems a classical use of the elem constraint consists ex-

pressing the link between a discrete choice and its corresponding cost. For each

discrete choice we create an elem constraint of the form:

elem















〈

index− Choice value− Cost
〉

,

〈

index− 1 value− Cost1,

index− 2 value− Cost2,

...

index−m value− Costm

〉















where:

• Choice is a domain variable that indicates which alternative will be finally

selected,

• Cost is a domain variable that corresponds to the cost of the decision associated

with the value of the Choice variable,

• Cost1, Cost2, . . . , Costm are the respective costs associated with the alterna-

tives 1, 2, . . . ,m.

3. In some problems we need to express a disjunction of the form VAR = VAR1∨VAR =
VAR2 ∨ · · · ∨ VAR = VARn. This can be directly reformulated as the following

elem constraint, where INDEX is a domain variable taking its value in the finite set

{1, 2, . . . , n} and where the TABLE argument corresponds to the domain variables

VAR1, VAR2, . . . , VARn:

elem















〈

index− INDEX value− VAR
〉

,

〈

index − 1 value− VAR1,

index − 2 value− VAR2,
.
..

index − n value− VARn

〉

















20030820 1121

4. In some scheduling problems the duration of a task depends on the machine where

the task will be assigned in final schedule. In this case we generate for each task an

elem constraint of the following form:

elem















〈

index− Machine value− Duration
〉

,

〈

index− 1 value − Dur1,

index− 2 value − Dur2,

..

.

index−m value − Durm

〉















where:

• Machine is a domain variable that indicates the resource to which the task will

be assigned,

• Duration is a domain variable that corresponds to the duration of the task,

• Dur1, Dur2, . . . , Durm are the respective duration of the task according to the

hypothesis that it runs on machine 1, 2 or m.

t

t

t

1 2 3 4 5 6 7

1

2

3

Machine = 1 ⇒ Duration = Dur1 = 4

Machine = 2 ⇒ Duration = Dur2 = 6

Machine = 3 ⇒ Duration = Dur3 = 4

time

m
ac

h
in

es

elem

(

〈index − Machine value − Duration〉,
〈index − 1 value − 4, index − 2 value − 6, index − 3 value − 4〉

)

Figure 5.295: A task t for which the duration depends on the machine 1, 2 or 3 to

which it is assigned

Figure 5.295 illustrates this particular use of the elem constraint for modelling that a

task has a duration of 4, 6 and 4 when we respectively assign it on machines 1, 2 and

3.

5. In some vehicle routing problems we typically use the elem constraint to express

the distance between location i and the next location visited by a vehicle. For this

purpose we generate for each location i an elem constraint of the form:

elem















〈

index− Nexti value− distancei

〉

,

〈

index− 1 value− Disti1 ,

index− 2 value− Disti2 ,

...

index−m value− Distim

〉















where:

• Nexti is a domain variable that gives the index of the location the vehicle will

visit just after location i,



1122 NARC,PRODUCT ; AUTOMATON

• distancei is a domain variable that corresponds to the distance between loca-

tion i and the location the vehicle will visit just after,

• Disti1 , Disti2 , . . . , Distim are the respective distances between location i

and locations 1, 2, . . . ,m.

An other example where the table argument corresponds to domain variables is described

in the keyword entry assignment to the same set of values.

Remark Originally, the parameters of the elem constraint had the form

element(INDEX, TABLE, VALUE), where INDEX and VALUE were two domain vari-

ables and TABLE was a list of non-negative integers.

Within some systems (e.g., Gecode), the index of the first entry of the table TABLE corre-

sponds to 0 rather than to 1.

When the first entry of the table TABLE corresponds to a value p that is different from

1 we can still use the elem constraint. We use the reformulation I = J − p + 1 ∧
elem(〈index− I value − V 〉, TABLE), where I and J are domain variables respectively

ranging from 1 to |TABLE| and from p to p+ |TABLE| − 1.

Systems nth in Choco, element in Gecode, element in JaCoP, element in SICStus.

See also common keyword: elem from to, element matrix, element product,

element sparse (array constraint), elements sparse,

stage element (data constraint).

implied by: element.

implies: element (single item replaced by two variables), element greatereq,

element lesseq, elements.

system of constraints: elements.

uses in its reformulation: elements alldifferent.

Keywords characteristic of a constraint: automaton, automaton without counters,

reified automaton constraint.

constraint arguments: pure functional dependency.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: data constraint.

filtering: arc-consistency.

heuristics: labelling by increasing cost, regret based heuristics.

modelling: array constraint, table, functional dependency, variable indexing,

variable subscript, disjunction, assignment to the same set of values,

sequence dependent set-up.

modelling exercises: assignment to the same set of values, sequence dependent set-up,

zebra puzzle.

puzzles: zebra puzzle.

Cond. implications elem(ITEM, TABLE)
with TABLE.value ≥ 0

implies bin packing capa(TABLE, ITEM).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.gecode.org/

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntElement.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Element.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.



20030820 1123

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.index

• item.value = table.value

Graph property(ies) NARC= 1

Graph model We regroup the INDEX and VALUE parameters of the original element constraint

element(INDEX, TABLE, VALUE) into the parameter ITEM. We also make explicit the dif-

ferent indices of the table TABLE.

Parts (A) and (B) of Figure 5.296 respectively show the initial and final graph associated

with the Example slot. Since we use the NARC graph property, the unique arc of the

final graph is stressed in bold.

ITEM

TABLE

1

1234

NARC=1

1:3,2

3:3,2

(A) (B)

Figure 5.296: Initial and final graph of the elem constraint

Signature Since all the index attributes of TABLE are distinct and because of the first condition of

the arc constraint the final graph cannot have more than one arc. Therefore we can rewrite

NARC = 1 to NARC ≥ 1 and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.



1124 NARC,PRODUCT ; AUTOMATON

Automaton Figure 5.297 depicts the automaton associated with the elem constraint. Let INDEX and

VALUE respectively be the index and the value attributes of the unique item of the ITEM

collection. Let INDEXi and VALUEi respectively be the index and the value attributes

of item i of the TABLE collection. To each quadruple (INDEX, VALUE, INDEXi, VALUEi)
corresponds a 0-1 signature variable Si as well as the following signature constraint:

((INDEX = INDEXi) ∧ (VALUE = VALUEi)) ⇔ Si.

s

t

ITEM INDEX 6= TABLE INDEXi ∨
ITEM VALUE 6= TABLE VALUEi

ITEM INDEX = TABLE INDEXi ∧
ITEM VALUE = TABLE VALUEi

ITEM INDEX 6= TABLE INDEXi ∨
ITEM VALUE 6= TABLE VALUEi

ITEM INDEX = TABLE INDEXi ∧
ITEM VALUE = TABLE VALUEi

Figure 5.297: Automaton of the elem(ITEM, TABLE) constraint (once one finds the

right item – index and value – in the table, one switches from the initial state s to the

accepting state t)

Q0 = s Q1

S1 S2

Qn = t

Sn

ITEM INDEX

ITEM VALUE

TABLE VALUE1 TABLE VALUE2 TABLE VALUEn

Figure 5.298: Hypergraph of the reformulation corresponding to the automaton of the

elem constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.



20030820 1125


