
1422 PRODUCT , SUCC

5.197 interval and count

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [126]

Constraint interval and count(ATMOST, COLOURS, TASKS, SIZE INTERVAL)

Arguments ATMOST : int

COLOURS : collection(val−int)
TASKS : collection(origin−dvar, colour−dvar)
SIZE INTERVAL : int

Restrictions ATMOST ≥ 0
required(COLOURS, val)
distinct(COLOURS, val)
required(TASKS, [origin, colour])
TASKS.origin ≥ 0
SIZE INTERVAL > 0

Purpose

First consider the set of tasks of the TASKS collection, where each task has a spe-

cific colour that may not be initially fixed. Then consider the intervals of the form

[k · SIZE INTERVAL, k · SIZE INTERVAL + SIZE INTERVAL − 1], where k is an inte-

ger. The interval and count constraint forces that, for each interval Ik previously

defined, the total number of tasks, which both are assigned to Ik and take their colour in

COLOURS, does not exceed the limit ATMOST.

Example

2, 〈4〉 ,

〈

origin− 1 colour− 4,
origin− 0 colour− 9,
origin− 10 colour− 4,
origin− 4 colour− 4

〉

, 5

Figure 5.440 shows the solution associated with the example. The constraint

interval and count holds since, for each interval, the number of tasks taking

colour 4 does not exceed the limit 2.

Typical ATMOST > 0
ATMOST < |TASKS|
|COLOURS| > 0
|TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.colour) > 1
SIZE INTERVAL > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 1423

¬

¯

®

︸ ︷︷ ︸

interval 0
︸ ︷︷ ︸

interval 1
︸ ︷︷ ︸

interval 2

︸
︷
︷
︸

colour ∈ {4}

colour /∈ {4}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 time

≤ 2

¬ o− 1 c− 4 ® o− 10 c− 4
 o− 0 c− 9 ¯ o− 4 c− 4

TASKS

(
o for origin, c for colour

)

4 9

colour codes:

Figure 5.440: The interval and count solution to the Example slot with the use of

each interval

Symmetries • ATMOST can be increased.

• Items of COLOURS are permutable.

• Items of TASKS are permutable.

• One and the same constant can be added to the origin attribute of all items of

TASKS.

• An occurrence of a value of TASKS.origin that belongs to the k-th interval, of

size SIZE INTERVAL, can be replaced by any other value of the same interval.

• An occurrence of a value of TASKS.colour that belongs to COLOURS.val
(resp. does not belong to COLOURS.val) can be replaced by any other value in

COLOURS.val (resp. not in COLOURS.val).

Arg. properties
• Contractible wrt. COLOURS.

• Contractible wrt. TASKS.

Usage This constraint was originally proposed for dealing with timetabling problems. In this

context the different intervals are interpreted as morning and afternoon periods of different

consecutive days. Each colour corresponds to a type of course (i.e., French, mathematics).

There is a restriction on the maximum number of courses of a given type each morning as

well as each afternoon.

Remark If we want to only consider intervals that correspond to the morning or to the afternoon we

could extend the interval and count constraint in the following way:

• We introduce two extra parameters REST and QUOTIENT that correspond to non-

negative integers such that REST is strictly less than QUOTIENT,

• We add the following condition to the arc constraint:

(tasks1.origin/SIZE INTERVAL) ≡ REST(mod QUOTIENT)

Now, if we want to express a constraint on the morning intervals, we set REST to 0 and

QUOTIENT to 2.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

1424 PRODUCT , SUCC

Reformulation Let K denote the index of the last possible interval where the tasks can

be assigned: K = ⌊
maxi∈[1,|TASKS|](TASKS[i].origin)+SIZE INTERVAL−1

SIZE INTERVAL
⌋. The

interval and count(ATMOST, COLOURS, TASKS, SIZE INTERVAL) constraint can

be expressed in term of a set of reified constraints and of K arithmetic constraints

(i.e., sum ctr constraints).

1. For each task TASKS[i] (i ∈ [1, |TASKS|]) of the TASKS collection we create a 0-1
variable Bi that will be set to 1 if and only if task TASKS[i] takes a colour within the

set of colours COLOURS:

Bi ⇔ TASKS[i].colour = COLOURS[1].val ∨
TASKS[i].colour = COLOURS[2].val ∨
. .
TASKS[i].colour = COLOURS[|COLOURS|].val.

2. For each task TASKS[i] (i ∈ [1, |TASKS|]) and for each interval [k ·
SIZE INTERVAL, k ·SIZE INTERVAL+SIZE INTERVAL−1] (k ∈ [0,K]) we create

a 0-1 variable Bik that will be set to 1 if and only if, both task TASKS[i] takes a colour

within the set of colours COLOURS, and the origin of task TASKS[i] is assigned within

interval [k · SIZE INTERVAL, k · SIZE INTERVAL + SIZE INTERVAL − 1]:
Bik ⇔ Bi ∧

TASKS[i].origin ≥ k · SIZE INTERVAL ∧
TASKS[i].origin ≤ k · SIZE INTERVAL + SIZE INTERVAL − 1

3. Finally, for each interval [k · SIZE INTERVAL, k · SIZE INTERVAL +
SIZE INTERVAL−1] (k ∈ [0, K]), we impose the sum B1k +B2k + · · ·+B|TASKS|k

to not exceed the maximum allowed capacity ATMOST.

See also assignment dimension removed: among low up (assignment dimension corresponding

to intervals is removed).

related: interval and sum (among low up constraint replaced by sum ctr).

used in graph description: among low up.

Keywords application area: assignment.

characteristic of a constraint: coloured, automaton, automaton with array of counters.

constraint type: timetabling constraint, resource constraint, temporal constraint.

modelling: assignment dimension, interval.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20000128 1425

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) tasks1.origin/SIZE INTERVAL = tasks2.origin/SIZE INTERVAL

Sets SUCC 7→

source,

variables − col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.colour)]

)

Constraint(s) on sets among low up(0, ATMOST, variables, COLOURS)

Graph model We use a bipartite graph where each class of vertices corresponds to the different tasks of

the TASKS collection. There is an arc between two tasks if their origins belong to the same

interval. Finally we enforce an among low up constraint on each set S of successors of the

different vertices of the final graph. This put a restriction on the maximum number of tasks

of S for which the colour attribute takes its value in COLOURS.

Parts (A) and (B) of Figure 5.441 respectively show the initial and final graph associated

with the Example slot. Each connected component of the final graph corresponds to items

that are all assigned to the same interval.

TASKS

TASKS

1

1234

234

TASKS

TASKS

1:1,4

1:1,4 2:0,94:4,4

2:0,93:10,4

3:10,4

4:4,4

(A) (B)

Figure 5.441: Initial and final graph of the interval and count constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1426 PRODUCT , SUCC

Automaton Figure 5.442 depicts the automaton associated with the interval and count constraint.

Let COLOURi be the colour attribute of the ith item of the TASKS collection. To each pair

(COLOURS, COLOURi) corresponds a signature variable Si as well as the following signature

constraint: COLOURi ∈ COLOURS ⇔ Si.

arith(C,≤, ATMOST)

s{C[]← 0}
in(COLOURi, COLOURS),{

C[⌊ ORIGINi
SIZE INTERVAL

⌋]← C[⌊ ORIGINi
SIZE INTERVAL

⌋] + 1
}

not in(COLOURi, COLOURS)

Figure 5.442: Automaton of the interval and count constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20000128 1427

