
1558 PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

5.230 lex greatereq

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint lex greatereq(VECTOR1, VECTOR2)

Synonyms lexeq, lex chain, rel, greatereq, geq, lex geq.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically greater than or equal to VECTOR2. Given two vectors,
~X and ~Y of n components, 〈X0, . . . , Xn−1〉 and 〈Y0, . . . , Yn−1〉, ~X is lexicographi-

cally greater than or equal to ~Y if and only if n = 0 or X0 > Y0 or X0 = Y0 and

〈X1, . . . , Xn−1〉 is lexicographically greater than or equal to 〈Y1, . . . , Yn−1〉.

Example (〈5, 2, 8, 9〉 , 〈5, 2, 6, 2〉)
(〈5, 2, 3, 9〉 , 〈5, 2, 3, 9〉)

The lex greatereq constraints associated with the first and second examples hold

since:

• Within the first example VECTOR1 = 〈5, 2, 8, 9〉 is lexicographically greater than or

equal to VECTOR2 = 〈5, 2, 6, 2〉.

• Within the second example VECTOR1 = 〈5, 2, 3, 9〉 is lexicographically greater than

or equal to VECTOR2 = 〈5, 2, 3, 9〉.

Typical |VECTOR1| > 1
∨

(

|VECTOR1| < 5,
nval([VECTOR1.var, VECTOR2.var]) < 2 ∗ |VECTOR1|

)

∨

(

maxval([VECTOR1.var, VECTOR2.var]) ≤ 1,
2 ∗ |VECTOR1|−max nvalue([VECTOR1.var, VECTOR2.var]) > 2

)

Symmetries • VECTOR1.var can be increased.

• VECTOR2.var can be decreased.

Arg. properties
Suffix-contractible wrt. VECTOR1 and VECTOR2 (remove items from same position).

Remark A multiset ordering constraint and its corresponding filtering algorithm are described

in [174].

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20030820 1559

Algorithm The first filtering algorithm maintaining arc-consistency for this constraint was presented

in [173]. A second filtering algorithm maintaining arc-consistency and detecting entail-

ment in a more eager way, was given in [96]. This second algorithm was derived from a

deterministic finite automata. A third filtering algorithm extending the algorithm presented

in [173] detecting entailment is given in the PhD thesis of Z. Kızıltan [239, page 95]. The

previous thesis [239, pages 105–109] presents also a filtering algorithm handling the fact

that a given variable has more than one occurrence. Finally, T. Frühwirth shows how to

encode lexicographic ordering constraints within the context of CHR [175] in [176].

Reformulation The following reformulations in term of arithmetic and/or logical expressions exist for

enforcing the lexicographically greater than or equal to constraint. The first one converts
~X and ~Y into numbers and post an inequality constraint. It assumes all components of ~X

and ~Y to be within [0, a− 1]:

an−1Y0 + an−2Y1 + · · ·+ a0Yn−1 ≤ an−1X0 + an−2X1 + · · ·+ a0Xn−1

Since the previous reformulation can only be used with small values of n and a, W. Harvey

came up with the following alternative model that maintains arc-consistency:

(Y0 < X0 + (Y1 < X1 + (· · ·+ (Yn−1 < Xn−1 + 1) . . .))) = 1

Finally, the lexicographically greater than or equal to constraint can be expressed as a

conjunction or a disjunction of constraints:

Y0 ≤ X0 ∧
(Y0 = X0) ⇒ Y1 ≤ X1 ∧

(Y0 = X0 ∧ Y1 = X1) ⇒ Y2 ≤ X2 ∧
...

(Y0 = X0 ∧ Y1 = X1 ∧ · · · ∧ Yn−2 = Xn−2) ⇒ Yn−1 ≤ Xn−1

Y0 < X0 ∨
Y0 = X0 ∧ Y1 < X1 ∨

Y0 = X0 ∧ Y1 = X1 ∧ Y2 < X2 ∨
...

Y0 = X0 ∧ Y1 = X1 ∧ · · · ∧ Yn−2 = Xn−2 ∧ Yn−1 ≤ Xn−1

When used separately, the two previous logical decompositions do not maintain

arc-consistency.

Systems lexEq in Choco, rel in Gecode, lex greatereq in MiniZinc, lex hain in

SICStus.

See also common keyword: cond lex greatereq, lex between, lex chain greater,

lex chain less, lex chain lesseq (lexicographic order), lex different (vector).

implied by: lex equal, lex greater, sort.

implies (if swap arguments): lex lesseq.

negation: lex less.

system of constraints: lex chain greatereq.

uses in its reformulation: lex chain greatereq.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex_greatereq
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

1560 PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

Keywords characteristic of a constraint: vector, automaton, automaton without counters,

reified automaton constraint, derived collection.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: duplicated variables, arc-consistency.

heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order, multiset ordering.

Keywords
Related keywords grouped by meta-keywords.

20030820 1561

Derived Collections

col

(

DESTINATION−collection(index−int, x−int, y−int),
[item(index− 0, x− 0, y− 0)]

)

col

COMPONENTS−collection(index−int, x−dvar, y−dvar),

 item

index − VECTOR1.key,

x− VECTOR1.var,

y− VECTOR2.var

Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→collection(item1, item2)

Arc arity 2

Arc constraint(s)
∨

item2.index > 0 ∧ item1.x = item1.y,

∧

item1.index < |VECTOR1|,
item2.index = 0,
item1.x > item1.y

 ,

∧

item1.index = |VECTOR1|,
item2.index = 0,
item1.x ≥ item1.y

Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Graph model Parts (A) and (B) of Figure 5.491 respectively show the initial and final graph associated

with the first example of the Example slot. Since we use the PATH FROM TO graph

property we show on the final graph the following information:

• The vertices, which respectively correspond to the start and the end of the required

path, are stressed in bold.

• The arcs on the required path are also stressed in bold.

The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components that both have the same index i.

• We create an additional dummy vertex called d.

The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. When ci was generated from the last components

of both vectors We associate to this arc the arc constraint item1.x ≥ item2.y;

Otherwise we associate to this arc the arc constraint item1.x > item2.y;

• We create an arc between ci and ci+1. We associate to this arc the arc constraint

item1.x = item2.y.

The lex greatereq constraint holds when there exist a path from c1 to d. This path can

be interpreted as a maximum sequence of equality constraints on the prefix of both vectors,

possibly followed by a greater than constraint.

Signature Since the maximum value returned by the graph property PATH FROM TO

is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to

PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO

to PATH FROM TO.

Derived Collections
Declarations of new collections that are derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

1562 PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

COMPONENTS

DESTINATION

1

2

1

3

4

PATH_FROM_TO(index,1,0)=1

COMPONENTS

DESTINATION

1:1,5,5

2:2,2,2

3:3,8,6

1:0,0,0

4:4,9,2

(A) (B)

Figure 5.491: Initial and final graph of the lex greatereq constraint

20030820 1563

Automaton Figure 5.492 depicts the automaton associated with the lex greatereq constraint. Let

VAR1i and VAR2i respectively be the var attributes of the ith items of the VECTOR1 and the

VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si as

well as the following signature constraint: (VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i =
VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

s t

VAR1i = VAR2i

VAR1i > VAR2i

VAR1i = VAR2i

VAR1i > VAR2i

VAR1i < VAR2i

Figure 5.492: Automaton of the lex greatereq constraint

Q0 = s Q1

S1 S2

Qn ∈ {s, t}

Sn

VAR11

VAR21

VAR12

VAR22

VAR1n

VAR2n

Figure 5.493: Hypergraph of the reformulation corresponding to the automaton of the

lex greatereq constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

