5.230 lex_greatereq

	DESCRIPTION	LINKS	GRAPH	AUTOMATON
Origin	CHIP			
Constraint	<pre>lex_greatereq(VECTOR1,VECTOR2)</pre>			
Synonyms	lexeq, lex_chain, rel, greate	ereq, geq, lex_geq.		
Arguments	VECTOR1 : collection(va VECTOR2 : collection(va	ar-dvar) ar-dvar)		
Restrictions	<pre>required(VECTOR1,var) required(VECTOR2,var) VECTOR1 = VECTOR2 </pre>			
Purpose	VECTOR1 is <i>lexicographically</i> g \vec{X} and \vec{Y} of <i>n</i> components, $\langle X$ <i>cally greater than or equal to</i> \vec{Y} $\langle X_1, \ldots, X_{n-1} \rangle$ is <i>lexicographical</i>	reater than or equal to $0, \ldots, X_{n-1}$ and $\langle Y_0 \rangle$ if and only if $n = 0$ ically greater than or equal to 1	o VECTOR2. Given two $, \ldots, Y_{n-1} \rangle$, \vec{X} is <i>lexico</i> o or $X_0 > Y_0$ or $X_0 =$ qual to $\langle Y_1, \ldots, Y_{n-1} \rangle$.	vectors, pgraphi- Y_0 and
Example	$(\langle 5, 2, 8, 9 \rangle, \langle 5, 2, 6, 2 \rangle) \\ (\langle 5, 2, 3, 9 \rangle, \langle 5, 2, 3, 9 \rangle)$ The lex_greatereq constraints since:	s associated with the	first and second examp	ples hold
Typical	 Within the first example VE equal to VECTOR2 = ⟨5, 2, 4] Within the second example or equal to VECTOR2 = ⟨5, 5] VECTOR1 > 1 ∨ (VECTOR1 < 5, 5) ¬val([VECTOB1 var. VECTOR1 var. VECTOR1] 	CTOR1 = $(5, 2, 8, 9)$ is (5, 2). VECTOR1 = $(5, 2, 3, 9)$ (2, 3, 9). CTOR2.varl) < 2 * [VE	s lexicographically greate is lexicographically greate CTOB1	er than or
Symmetries	 V (^{maxval}([VECTOR1.var, V 2 * VECTOR1] - max_nva VECTOR1.var can be increased 	VECTOR2.var]) $\leq 2 + V $ VECTOR2.var]) ≤ 1 , lue([VECTOR1.var, VE	CTOR2.var]) > 2	
-	• VECTOR2.var can be decr	eased.		
Arg. properties	Suffix-contractible wrt. VECTOR1	and VECTOR2 (remove	e items from same positio	<i>n</i>).
Remark	A <i>multiset ordering</i> constraint a in [174].	and its corresponding	filtering algorithm are	described

1558

20030820

Algorithm

The first filtering algorithm maintaining arc-consistency for this constraint was presented in [173]. A second filtering algorithm maintaining arc-consistency and detecting entailment in a more eager way, was given in [96]. This second algorithm was derived from a deterministic finite automata. A third filtering algorithm extending the algorithm presented in [173] detecting entailment is given in the PhD thesis of Z. Kızıltan [239, page 95]. The previous thesis [239, pages 105–109] presents also a filtering algorithm handling the fact that a given variable has more than one occurrence. Finally, T. Frühwirth shows how to encode lexicographic ordering constraints within the context of CHR [175] in [176].

Reformulation

The following reformulations in term of arithmetic and/or logical expressions exist for enforcing the *lexicographically greater than or equal to* constraint. The first one converts \vec{X} and \vec{Y} into numbers and post an inequality constraint. It assumes all components of \vec{X} and \vec{Y} to be within [0, a - 1]:

$$a^{n-1}Y_0 + a^{n-2}Y_1 + \dots + a^0Y_{n-1} \le a^{n-1}X_0 + a^{n-2}X_1 + \dots + a^0X_{n-1}$$

Since the previous reformulation can only be used with small values of n and a, W. Harvey came up with the following alternative model that maintains arc-consistency:

$$(Y_0 < X_0 + (Y_1 < X_1 + (\dots + (Y_{n-1} < X_{n-1} + 1)\dots))) = 1$$

Finally, the *lexicographically greater than or equal to* constraint can be expressed as a conjunction or a disjunction of constraints:

$$Y_0 \leq X_0 \land \land$$
$$(Y_0 = X_0) \Rightarrow Y_1 \leq X_1 \land \land$$
$$(Y_0 = X_0 \land Y_1 = X_1) \Rightarrow Y_2 \leq X_2 \land \land$$
$$\vdots$$
$$(Y_0 = X_0 \land Y_1 = X_1 \land \dots \land Y_{n-2} = X_{n-2}) \Rightarrow Y_{n-1} \leq X_{n-1}$$

$$Y_0 = X_0 \land Y_1 < X_1 \land Y_0 = X_0 \land Y_1 = X_1 \land Y_2 < X_2 \land Y_0 = X_0 \land Y_1 = X_1 \land Y_2 < X_2 \land Y_0 = X_0 \land Y_1 = X_1 \land Y_2 < X_2 \land Y_0 = X_0 \land Y_0 \land Y_0$$

$$Y_0 = X_0 \land Y_1 = X_1 \land \dots \land Y_{n-2} = X_{n-2} \land Y_{n-1} \le X_{n-1}$$

When used separately, the two previous logical decompositions do not maintain arc-consistency.

Systems lexEq in Choco, rel in Gecode, lex_greatereq in MiniZinc, lex_chain in SICStus.

 See also
 common keyword:
 cond_lex_greatereq,
 lex_between,
 lex_chain_greater,

 lex_chain_less,
 lex_chain_lesseq (lexicographic order),
 lex_different (vector).

implied by: lex_equal, lex_greater, sort.

implies (if swap arguments): lex_lesseq.

negation: lex_less.

system of constraints: lex_chain_greatereq.

uses in its reformulation: lex_chain_greatereq.

<u>PATH_FROM_TO</u>, *PRODUCT*(*PATH*, *VOID*); AUTOMATON

Keywords characteristic of a constraint: vector, automaton, automaton without counters, reified automaton constraint, derived collection. constraint network structure: Berge-acyclic constraint network. constraint type: order constraint. filtering: duplicated variables, arc-consistency. heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order, multiset ordering.

1560

Figure 5.491: Initial and final graph of the lex_greatereq constraint

20030820

Automaton

Figure 5.492 depicts the automaton associated with the lex_greatereq constraint. Let VAR1_i and VAR2_i respectively be the var attributes of the i^{th} items of the VECTOR1 and the VECTOR2 collections. To each pair (VAR1_i, VAR2_i) corresponds a signature variable S_i as well as the following signature constraint: (VAR1_i < VAR2_i \Leftrightarrow $S_i = 1$) \land (VAR1_i = VAR2_i \Leftrightarrow $S_i = 2$) \land (VAR1_i > VAR2_i \Leftrightarrow $S_i = 3$).

Figure 5.492: Automaton of the lex_greatereq constraint

Figure 5.493: Hypergraph of the reformulation corresponding to the automaton of the lex_greatereq constraint