1682

ORDER, CLIQUE

5.256 min_n

	DESCRIPTION	LINKS	GRAPH	AUTOMATON
Origin	[27]			
Constraint	min_n(MIN, RANK, VARIABLES)			
Arguments	MIN : dvar RANK : int VARIABLES : collection	n(var-dvar)		
Restrictions	$\begin{split} \texttt{VARIABLES} &> 0 \\ \texttt{RANK} &\geq 0 \\ \texttt{RANK} &< \texttt{VARIABLES} \\ \texttt{required}(\texttt{VARIABLES},\texttt{var}) \end{split}$			
Purpose	MIN is the minimum value of ra values are merged) of the coll value has rank 0.			
Example	$(3, 1, \langle 3, 1, 7, 1, 6 \rangle)$ The min_n constraint holds sin (i.e., RANK + 1) smallest distinct values are only counted once: the	t value of the collection	n $\langle 3, 1, 7, 1, 6 \rangle$. Note th	at identical
Typical	$\begin{array}{l} {\rm RANK} > 0 \\ {\rm RANK} < 3 \\ {\rm VARIABLES} > 1 \\ {\rm range}({\rm VARIABLES.var}) > 1 \end{array}$			
Symmetries	 Items of VARIABLES are One and the same constall items of VARIABLES. 	ant can be added to MII	N as well as to the var a	ttribute of
Arg. properties	Functional dependency: MIN de	etermined by RANK and	VARIABLES.	
Algorithm	[27].			
Reformulation	The constraint among_var(1, $\langle \mathbb{N} \rangle$ values of VARIABLES. The constraint values of distinct values assign variable V_i ($i \in [1, VARIABLES - 1]$ with the r $R_i < NVAL$, and by creating for	straint nvalue (NVAL, V ned to the variables of V ES]) of the VARIABLE eified constraint $R_i =$	ARIABLES) provides a h ARIABLES. By associat S collection a <i>rank</i> vari RANK $\Leftrightarrow V_i = MIN$, the	and on the ing to each able $R_i \in$ inequality

the reified constraints
$$\begin{split} V_i &< V_j \Leftrightarrow R_i < R_j, \\ V_i &= V_j \Leftrightarrow R_i = R_j, \\ V_i &> V_j \Leftrightarrow R_i > R_j, \end{split}$$
 $v_i > v_j \leftrightarrow n_i > n_j$, one can reformulate the min_n constraint in term of $3 \cdot \frac{|\text{VARIABLES}| \cdot (|\text{VARIABLES}| - 1)}{2} + 1$ reified constraints. See also comparison swapped: max_n. generalisation: minimum (absolute minimum replaced by minimum or order n). used in reformulation: among_var, nvalue. Keywords characteristic of a constraint: rank, minimum, maxint, automaton, automaton with array of counters. constraint arguments: pure functional dependency. constraint type: order constraint. modelling: functional dependency. **Cond.** implications • min_n(MIN, RANK, VARIABLES) implies atleast(N, VARIABLES, MIN) when N = 1. • min_n(MIN, RANK, VARIABLES) with RANK = 1and minval(VARIABLES.var) = 1implies minimum_greater_than(VAR1, VAR2, VARIABLES).

Arc input(s)	VARIABLES		
Arc generator	$CLIQUE \mapsto \texttt{collection}(\texttt{variables1},\texttt{variables2})$		
Arc arity	2		
Arc constraint(s)	$\bigvee \left(egin{array}{l} { t variables1.key = variables2.key,} \\ { t variables1.var < variables2.var} \end{array} ight)$		
Graph property(ies)	$\mathbf{ORDER}(\mathbf{RANK}, \mathbf{MAXINT}, \mathbf{var}) = \mathbf{MIN}$		

Parts (A) and (B) of Figure 5.537 respectively show the initial and final graph associated with the **Example** slot. Since we use the **ORDER** graph property, the vertex of rank 1 (without considering the loops) of the final graph is shown in grey.

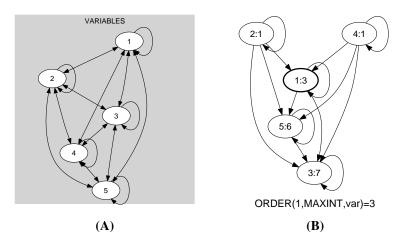


Figure 5.537: Initial and final graph of the min_n constraint

1684

Graph model

20000128

Automaton

Figure 5.538 depicts the automaton associated with the min_n constraint. Figure 5.538 depicts the automaton associated with the min_n constraint. To each item of the collection VARIABLES corresponds a signature variable S_i that is equal to 1.

$$\left\{\begin{array}{c} C[\lrcorner] \leftarrow 0, \\ D \leftarrow \text{maxint} \end{array}\right\} \longrightarrow \left[\begin{array}{c} s \\ s \\ \vdots \\ \end{array}\right] \left\{\begin{array}{c} C[\texttt{VAR}_i] \leftarrow C[\texttt{VAR}_i] + 1, \\ D \leftarrow \min(D, \texttt{VAR}_i) \end{array}\right\}$$
$$\underbrace{\texttt{ith_pos_different_from_0}(\texttt{RANK} + 1, M, C) \\ \texttt{MIN} = M + D - 1 \end{array}\right\}$$

Figure 5.538: Automaton of the min_n constraint