5.274 nequivalence

	DESCRIPTION	LINKS	GRAPH
Origin	Derived from nvalue.		
Constraint	nequivalence(NEQUIV, M, VARIA	ABLES)	
Arguments	NEQUIV : dvar M : int VARIABLES : collection(v	var-dvar)	
Restrictions	$\begin{array}{l} \textbf{required}(\texttt{VARIABLES},\texttt{var})\\ \texttt{NEQUIV} \geq \texttt{min}(1, \texttt{VARIABLES})\\ \texttt{NEQUIV} \leq \texttt{min}(\texttt{M}, \texttt{VARIABLES})\\ \texttt{NEQUIV} \leq \texttt{range}(\texttt{VARIABLES}.\texttt{var})\\ \texttt{M} > 0 \end{array}$	ar)	
Purpose	NEQUIV is the number of distinct re VARIABLES by M.	ests obtained by dividin	g the variables of the collection
Example	$(2, 3, \langle 3, 2, 5, 6, 15, 3, 3 \rangle)$ Since the expressions 3 mod 3 = 15 mod 3 = 0, 3 mod 3 = 0, and 2), the first argument NEQUIV of the	= 0, 2 mod 3 = 2, 5 3 mod 3 = 0 involve t e nequivalence const	mod $3 = 2$, $6 \mod 3 = 0$, wo distinct values (values 0 and raint is set to value 2.
Typical	NEQUIV > 1 NEQUIV < VARIABLES NEQUIV <range(variables.va M > 1 M <maxval(variables.var)< th=""><th>ar)</th><th></th></maxval(variables.var)<></range(variables.va 	ar)	
Symmetries	 Items of VARIABLES are pee An occurrence of a value u v such that v is congruent to 	rmutable. of VARIABLES.var can o <i>u</i> modulo M.	be replaced by any other value
Arg. properties	 Functional dependency: NE Contractible wrt. VARIABLI Contractible wrt. VARIABLI Extensible wrt. VARIABLES 	QUIV determined by M a ES when NEQUIV = 1 a ES when NEQUIV = $ VA $ when NEQUIV = M.	and VARIABLES. nd VARIABLES > 0. RIABLES .
Algorithm	Since constraints $X = Y$ and $X \equiv$ algorithm as the one [27, 40] provide	$Y \pmod{M}$ are simil ded for constraint nval	ar, one should also use a similar ue.

1772

20000128

See also	related: nclass(variable mod constant <i>replaced by</i> variable \in partition), ninterval(variable mod constant <i>replaced by</i> variable/constant), npair(variable mod constant <i>replaced by</i> pair of variables).
	specialisation: nvalue(variable mod constant <i>replaced by</i> variable).
Keywords	constraint arguments: pure functional dependency.
	constraint type: counting constraint, value partitioning constraint.
	final graph structure: strongly connected component, equivalence.
	modelling: number of distinct equivalence classes, functional dependency.

Arc input(s)	VARIABLES
Arc generator	$CLIQUE \mapsto collection(variables1, variables2)$
Arc arity	2
Arc constraint(s)	$\texttt{variables1.var} \bmod \texttt{M} = \texttt{variables2.var} \bmod \texttt{M}$
Graph property(ies)	NSCC= NEQUIV

Parts (A) and (B) of Figure 5.574 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NSCC** graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to one equivalence class: We have two equivalence classes that respectively correspond to values $\{3, 6, 15\}$ and $\{2, 5\}$.

Figure 5.574: Initial and final graph of the nequivalence constraint

1774

Graph model