
1826 NSCC,CLIQUE

5.286 nvalue

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [303]

Constraint nvalue(NVAL, VARIABLES)

Synonyms cardinality on attributes values, values.

Arguments NVAL : dvar

VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
NVAL ≥ min(1, |VARIABLES|)
NVAL ≤ |VARIABLES|
NVAL ≤range(VARIABLES.var)

Purpose NVAL is the number of distinct values taken by the variables of the collection VARIABLES.

Example (4, 〈3, 1, 7, 1, 6〉)
(1, 〈6, 6, 6, 6, 6〉)
(5, 〈6, 3, 0, 2, 9〉)

• The first nvalue constraint holds

since its first argument NVAL = 4
is set to the number of distinct val-

ues occurring within the collection

〈3, 1, 7, 1, 6〉.

• The second nvalue constraint holds

since its first argument NVAL = 1
is set to the number of distinct val-

ues occurring within the collection

〈6, 6, 6, 6, 6〉.

• The third nvalue constraint holds

since its first argument NVAL = 5
is set to the number of distinct val-

ues occurring within the collection

〈6, 3, 0, 2, 9〉.

31

first value

12, 14

second value

73

third value

65

fourth value

61, 62, 63, 64, 65

first value

61

first value

32

second value

03

third value

24

fourth value

95

fifth value

All solutions Figure 5.597 gives all solutions to the following non ground instance of the nvalue con-

straint: N ∈ [1, 2], V1 ∈ [2, 4], V2 ∈ [1, 2], V3 ∈ [2, 4], nvalue(N, 〈V1, V2, V3〉).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

All solutions
Example of all solutions for a non ground instance of the constraint.

20000128 1827

¬ (1, 〈2,2,2〉)
­ (2, 〈2,1,2〉)
® (2, 〈2,2,3〉)
¯ (2, 〈2,2,4〉)
° (2, 〈3,1,3〉)

± (2, 〈3,2,2〉)
² (2, 〈3,2,3〉)
³ (2, 〈4,1,4〉)
´ (2, 〈4,2,2〉)
µ (2, 〈4,2,4〉)

Figure 5.597: All solutions corresponding to the non ground example of the nvalue

constraint of the All solutions slot

Typical NVAL > 1
NVAL < |VARIABLES|
|VARIABLES| > 1

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all

occurrences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties
• Functional dependency: NVAL determined by VARIABLES.

• Contractible wrt. VARIABLES when NVAL = 1 and |VARIABLES| > 0.

• Contractible wrt. VARIABLES when NVAL = |VARIABLES|.

Usage The nvalue constraint allows relaxing the alldifferent constraint by restricting its first

argument NVAL to be close, but not necessarily equal, to the number of variables of the

VARIABLES collection.

A classical example from the early 1850s is the dominating queens chess puzzle problem:

Place a number of queens on an n by n chessboard in such a way that all cells of the

chessboard are either attacked by a queen or are occupied by a queen. A queen can attack

all cells located on the same column, on the same row or on the same diagonal. Part (A)

of Figure 5.598 illustrates a set of five queens which together attack all of the cells of an

8 by 8 chessboard. The dominating queens problem can be modelled by just one nvalue

constraint:

• We first label the different cells of the chessboard from 1 to n2.

• We then associate to each cell c of the chessboard a domain variable. Its ini-

tial domain is set to the labels of the cells that can attack cell c. For instance,

in the context of an 8 by 8 chessboard, the initial domain of V29 will be set to

{2,5,8,11,13,15,20..22,25..32,36..38,43,45,47,50,53,56,57,61} (see the green cells

of part (B) of Figure 5.598).

• Finally, we post the constraint nvalue(Q, 〈var − V1, var − V2, . . . , var − Vn2〉)
where Q is a domain variable in [1, n2] that gives the total number of queens used

for controlling all cells of the chessboard. For the solution depicted by Part (A)

of Figure 5.598, the label in each cell of Part (C) of Figure 5.598 gives the value

assigned to the corresponding variable. Note that, since a given cell can be attacked

by several queens, we have also other assignments corresponding to the solution

depicted by Part (A) of Figure 5.598.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

1828 NSCC,CLIQUE

Q

Q

Q

Q

Q

(A)

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

(B)

46 29 35 12 29 46 35 29

12 46 29 12 29 35 29 23

35 23 35 29 29 29 23 23

29 29 29 29 29 29 29 29

35 35 35 29 29 29 35 35

46 35 29 35 29 46 29 46

35 29 35 12 29 46 46 29

29 23 35 46 29 35 23 46

(C)

Figure 5.598: Modelling the dominating queens problem with a single nvalue con-

straint; (A) a solution to the dominating queens problem, (B) the initial domain (in

bold) of the variable associated with cell 29: in a solution the value j assigned to the

variable associated with cell i represents the label of the cell attacking cell i (i.e. in a

solution one of the selected queens is located on cell j), (C) the value of each cell in

the model with one single nvalue constraint corresponding to the solution depicted

in (A).

The nvalue constraint occurs also in many practical applications. In the context of

timetabling one wants to set up a limit on the maximum number of activity types it is

possible to perform. For frequency allocation problems, one optimisation criterion is to

minimise the number of distinct frequencies that you use all over the entire network.

The nvalue constraint generalises several constraints like:

• alldifferent(VARIABLES): in order to get the alldifferent constraint, one has

to set NVAL to the total number of variables.

• not all equal(VARIABLES): in order to get the not all equal constraint, one

has to set the minimum value of NVAL to 2.

Remark This constraint appears in [303, page 339] under the name of Cardinality on Attributes

Values. The nvalue constraint is called values in JaCoP (http://www.ja
op.eu/).

A constraint called k diff enforcing that a set of variables takes at least k distinct values

appears in the PhD thesis of J.-C. Régin [341].

It was shown in [69] that, finding out whether a nvalue constraint has a solution or not is

NP-hard. This was achieved by reduction from 3-SAT. In the same article, it is also shown,

by reduction from minimum hitting set cardinality, that computing a sharp lower bound on

NVAL is NP-hard.

Both reformulations of the coloured cumulative constraint and of the

coloured cumulatives constraint use the nvalue constraint.

Algorithm A first filtering algorithm for the nvalue constraint was described in [27]. Assuming that

the minimum value of variable NVAL is not constrained at all, two algorithms that both

achieve bound-consistency were provided one year later in [40]. Under the same assump-

tion, algorithms that partially take into account holes in the domains of the variables of the

VARIABLES collection are described in [40, 62].

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.jacop.eu/

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20000128 1829

Reformulation A model, involving linear inequalities constraints, preserving bound-consistency was in-

troduced in [72].

Counting

Length (n) 2 3 4 5 6 7 8

Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for nvalue: domains 0..n

2 3 4 5 6 7 8

10−0.4

10−0.2

100

100.2

100.4

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for nvalue

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Counting
Information on the solution density.

1830 NSCC,CLIQUE

2 3 4 5 6 7 8

0.9

1

1.1

1.2

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for nvalue

Length (n) 2 3 4 5 6 7 8

Total 9 64 625 7776 117649 2097152 43046721

Parameter

value

1 3 4 5 6 7 8 9

2 6 36 140 450 1302 3528 9144

3 - 24 360 3000 18900 101136 486864

4 - - 120 3600 54600 588000 5143824

5 - - - 720 37800 940800 15876000

6 - - - - 5040 423360 16087680

7 - - - - - 40320 5080320

8 - - - - - - 362880

Solution count for nvalue: domains 0..n

20000128 1831

0.2 0.4 0.6 0.8 1

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for nvalue

size 6

size 7

size 8

0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for nvalue

size 6

size 7

size 8

Systems nvalues in Gecode, nvalue in MiniZinc, nvalue in SICStus.

Used in track.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntNValues.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#nvalue
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

Used in
List of constraints that use this constraint in their description.

1832 NSCC,CLIQUE

See also assignment dimension added: assign and nvalues.

common keyword: among, among diff 0, count,

global cardinality, max nvalue, min nvalue (counting constraint),

nvalues except 0 (counting constraint,number of distinct values).

cost variant: sum of weights of distinct values (introduce a weight for each value

and replace number of distinct values by sum of weights associated with distinct values).

generalisation: nclass (variable replaced by variable ∈ partition),

nequivalence (variable replaced by variable mod constant),

ninterval (variable replaced by variable/constant), npair (variable re-

placed by pair of variables), nvalues (replace an equality with the number of distinct

values by a comparison with the number of distinct values), nvector (variable replaced

by vector).

implied by: increasing nvalue.

implies: atleast nvalue (= NVAL replaced by ≥ NVAL), atmost nvalue (= NVAL re-

placed by ≤ NVAL).

related: balance (restriction on how balanced an assignment is),

coloured cumulative (restrict number of distinct colours on each maximum clique of

the interval graph associated with the tasks), coloured cumulatives (restrict number of

distinct colours on each maximum clique of the interval graph associated with the tasks as-

signed to the same machine), increasing nvalue chain, k alldifferent (necessary

condition for two overlapping alldifferent constraints), soft alldifferent var.

shift of concept: nvalue on intersection.

soft variant: nvalues except 0 (value 0 is ignored).

specialisation: all equal (enforce to have one single value), alldifferent (enforce a

number of distinct values equal to the number of variables), not all equal (enforce to

have at least two distinct values).

uses in its reformulation: consecutive values, cycle, min n.

Keywords characteristic of a constraint: core, automaton, automaton with array of counters.

complexity: 3-SAT, minimum hitting set cardinality.

constraint arguments: pure functional dependency.

constraint type: counting constraint, value partitioning constraint.

filtering: bound-consistency, convex bipartite graph.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, number of distinct values,

functional dependency.

problems: domination.

puzzles: dominating queens.

Cond. implications nvalue(NVAL, VARIABLES)
with increasing(VARIABLES)

implies increasing nvalue(NVAL, VARIABLES).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

Cond. implications
Conditional implications.

20000128 1833

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC= NVAL

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure 5.599 respectively show the initial and final graph associated

with the first example of the Example slot. Since we use the NSCC graph property

we show the different strongly connected components of the final graph. Each strongly

connected component corresponds to a value that is assigned to some variables of the

VARIABLES collection. The 4 following values 1, 3, 6 and 7 are used by the variables

of the VARIABLES collection.

VARIABLES

1

2

3

4

5

NSCC=4

SCC#1 SCC#2 SCC#3 SCC#4

1:3 2:1

4:1

3:7 5:6

(A) (B)

Figure 5.599: Initial and final graph of the nvalue constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1834 NSCC,CLIQUE

Automaton Figure 5.600 depicts the automaton associated with the nvalue constraint. To each item

of the collection VARIABLES corresponds a signature variable Si that is equal to 0.

among diff 0(N, C)

s{C[]← 0}
0,
{C[VARi]← C[VARi] + 1}

Figure 5.600: Automaton of the nvalue constraint

Quiz

EXERCISE 1 (checking whether a ground instance holds or not)a

A. Does the constraint nvalue(0, 〈0, 0, 0, 0〉) hold?

B. Does the constraint nvalue(3, 〈1, 2, 3〉) hold?

C. Does the constraint nvalue(3, 〈1, 2, 3, 3〉) hold?

aHint: go back to the definition of nvalue.

EXERCISE 2 (finding all solutions)a

Give all the solutions to the constraint:















N ∈ {1, 5},
V1 ∈ [3, 5], V2 ∈ [3, 4], V3 ∈ [2, 5],
V4 ∈ [3, 3], V5 ∈ [3, 4], V6 ∈ [3, 7],
nvalue(N, 〈V1, V2, V3, V4, V5, V6〉).

aHint: identify the smallest and largest possible values of N , enumerate

solutions in lexicographic order.

EXERCISE 3 (identifying infeasible values wrt the at most side)a

Identify all variable-value pairs (Vi, val) (1 ≤ i ≤ 6), such that the

following constraint has no solution when variable Vi is assigned value

val :















N ∈ [0, 2],
V1 ∈ [2, 4], V2 ∈ [2, 5], V3 ∈ [4, 5],
V4 ∈ [4, 7], V5 ∈ [5, 8], V6 ∈ [6, 9],
nvalue(N, 〈V1, V2, V3, V4, V5, V6〉).

aHint: are variables equivalent wrt a given value?

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

Quiz
A set of small exercises for checking that the meaning of the constraint is well understood.

20000128 1835

EXERCISE 4 (identifying infeasible variable-value pairs wrt the at

least side)a

Identify all variable-value pairs (Vi, val) (1 ≤ i ≤ 6), such that the

following constraint has no solution when variable Vi is assigned value

val :















N ∈ [5, 6],
V1 ∈ [2, 4], V2 ∈ [2, 3], V3 ∈ [4, 5],
V4 ∈ [2, 3], V5 ∈ [2, 3], V6 ∈ [5, 6],
nvalue(N, 〈V1, V2, V3, V4, V5, V6〉).

aHint: find out how to compute the maximum number of distinct values.

EXERCISE 5 (variable-based degree of violation)a

Compute the variable-based degree of violationb of the following con-

straints:

A. nvalue(4, 〈2, 2, 2, 2〉),

B. nvalue(3, 〈3, 1, 5, 2, 3〉).

aHint: take advantage of the functional dependency.
bGiven a constraint for which all variables are fixed, the variable-based de-

gree of violation is the minimum number of variables to assign differently in

order to satisfy the constraint.

EXERCISE 6 (variations of dominating

knights)a

A. Provide a model involving only one

nvalue constraint for showing that

the cardinality of the dominating

setb of the knight graph of a 4 by 4
chessboard does not exceed 4.

B. Show how to modify your model

for also considering the fact that

each knight must be protected by at

least one other knight. Show that

the number of required knights does

not exceed 6.

aHint: model the knight graph with a set of

variables; in a domination problem whats mat-

ters for each vertex v is which vertices attack

v.
bGiven a graph G a dominating set D is

a subset of the vertices of G such that every

vertex of G either belongs to D or is adjacent

to a vertex of G.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

4× 4 knight graph

1836 NSCC,CLIQUE

SOLUTION TO EXERCISE 1

A. No, since 〈0, 0, 0, 0〉 contains just one distinct value (and not 0
distinct values as stated by the first argument).

B. Yes, since 〈1, 2, 3〉 contains 3 distinct values as stated by the first

argument.

C. Yes, since 〈1, 2, 3, 3〉 contains 3 distinct values as stated by the

first argument.

SOLUTION TO EXERCISE 2

N, 〈V1, V2, V3, V4, V5, V6〉

¬ (1, 〈3, 3, 3, 3, 3, 3〉)
­ (5, 〈5, 3, 2, 3, 4, 6〉)
® (5, 〈5, 3, 2, 3, 4, 7〉)
¯ (5, 〈5, 4, 2, 3, 3, 6〉)
° (5, 〈5, 4, 2, 3, 3, 7〉)
± (5, 〈5, 4, 2, 3, 4, 6〉)
² (5, 〈5, 4, 2, 3, 4, 7〉)

the seven solutions

A. Value 3 being the only common value to variables V1, V2, V3,

V4, V5, V6, we get a single solution where N is set to 1,

i.e. solution ¬.

B. A matching of cardinality 5 is given by V1 = 5, V2 = 3,

V3 = 2, V4 = 3, V5 = 4, V6 = 6. It is maximum since variables

V1, V2, V3, V4, V5 have to be assigned one of the four values 2,

3, 4 and 5, and since values 6 and 7 can only be assigned to

variable V6. In any maximum matching we have that:

(a) Since variable V6 is the only variable that can be

assigned values 6 or 7, we have V6 = 6 or V6 = 7.

(b) Since variable V3 is the only variable that can be

assigned value 2, we have V3 = 2.

(c) Now that V3 is assigned value 2 and that V6 is assigned

values 6 or 7, variable V1 is the only variable that can be

assigned value 5, we have V1 = 5.

Finally combining the fact that variables V2, V5 have to be

assigned a distinct value in {3, 4} and variable V6 a value in

{6, 7} we obtain the remaining six solutions ­, ®, ¯, °, ±, ².

20000128 1837

SOLUTION TO EXERCISE 3

The constraint forces that at most two distinct values are assigned to

variables V1, V2, . . . , V6, i.e. there is no restriction coming from N on

the minimum number of distinct values. In this context, a value val as-

signed to one of the variables Vi (1 ≤ i ≤ 6) can be assigned to any

other variable Vi without increasing the number of distinct values. Con-

sequently a value val that is not removed (resp. removed) from a vari-

able Vi (1 ≤ i ≤ 6) can also not be removed (resp. removed) from

a variable Vj (j 6= i, 1 ≤ j ≤ 6). Let us successively study the val-

ues that can not be removed and the values that can be removed from

V1, V2, . . . , V6.

A. [FEASIBLE VALUES]

Consider the three solutions

nvalue(2, 〈4, 4, 4, 4, 6, 6〉),
nvalue(2, 〈4, 4, 4, 4, 7, 7〉),
nvalue(2, 〈4, 4, 4, 4, 8, 8〉).

All values used in the previous

solutions (i.e., values 4, 6, 7, 8)

can not be removed from

V1, V2, . . . , V6.

B. [INFEASIBLE VALUES]

We now show that 2 cannot be

assigned to any variable. If 2
can be used then we assign 2
to all variables that have 2 in

their domains, i.e., V1 and V2.

Now in order not to exceed two

distinct values, the remaining

variables V3, V4, V5, V6 must

have a value in common, which

is not the case. We can show in

the same way that values 3, 5
and 9 cannot be assigned to any

variable.

Finally since V1, V2, . . . , V6 do not have any value in common,

N can only be equal to 2.

V1 V2 V3 V4 V5 V6

1

4

6

7

8

2

3

5

9

Vi

Vi

Vi

vj

vj

vj

vj /∈ dom(Vi)

vj ∈ dom(Vi)

vj pruned
from dom(Vi)

1838 NSCC,CLIQUE

SOLUTION TO EXERCISE 4

The constraint forces that at least five distinct values are assigned to

variables V1, V2, . . . , V6, i.e. there is no restriction coming from N on

the maximum number of distinct values. Consequently identifying infeasi-

ble variable-value pairs is equivalent to finding edges that do not belong

to any matchinga of cardinality greater than or equal to the minimum

value of N in the variable-value bipartite graph G(V,E) associated with

the nvalue constraint (the vertices V of G are defined by the variables

V1, V2, . . . , V6 and by the values 2, 3, . . . , 6, while the edges E are de-

fined by the pairs (Vi, val), (1 ≤ i ≤ 6) such that val ∈ dom(Vi)).

A. [MAXIMUM MATCHING]

The solution nvalue(5, 〈4, 2, 5, 3, 2, 6〉)
corresponds to a matching of cardina-

lity 5 shown in red on the variable-value

graph. This matching is maximum since

|dom(V1) ∪ dom(V2) ∪ · · · ∪ dom(V6)|
= 5. Therefore N can only be equal to 5.

B. [INFEASIBLE EDGES]

¬ Since |dom(V2) ∪ dom(V4)| = 2,

V1 must be assigned value 4
in any maximum matching.

­ Since V1 must be assigned

value 4 in any maximum

matching and since dom(V3)
= {4, 5}, V3 must be assigned

value 5 in any maximum mat-

ching.

® Since V3 must be assigned

value 5 in any maximum

matching and since dom(V6)
= {5, 6}, V6 must be assigned

value 6 in any maximum mat-

ching.

C. Finally, V2, V4, V5 must be assigned two distinct values from

{2, 3} in any maximum matching.

aA matching of a graph G is a set of edges of G such that no two edges have

a vertex in common.

V1 V2 V3 V4 V5 V6

2

3

4

5

6

¬ ­ ®

Vi

Vi

Vi

vj

vj

vj

vj /∈ dom(Vi)

vj ∈ dom(Vi)

vj pruned
from dom(Vi)

V1

V2

V3

V4

V5

V6

2

3

4

5

6

20000128 1839

SOLUTION TO EXERCISE 5

For a violated nvalue constraint it is always possible to change a single

variable to get a feasible solution. This is done by setting the first argu-

ment of the nvalue constraint to the number of distinct values occurring

in the second argument.

A. The degree of violation is equal to 1 since the first argument needs

to be set to 1 in order to obtain a solution.

nvalue(

1

4, 〈2, 2, 2, 2〉)

B. The degree of violation is equal to 1 since the first argument needs

to be set to 4 in order to obtain a solution.

nvalue(

4

3, 〈3, 1, 5, 2, 3〉)

Note that in this example we have other possibilities such as

nvalue(3, 〈3, 1,

1

5, 2, 3〉)

1840 NSCC,CLIQUE

SOLUTION TO EXERCISE 6

A. Each vertex of the 4× 4 knight graph is represented by a variable whose

domain is set to the labels of its adjacent vertices as well as to its own label.

Consequently we get the following 16 variables with their corresponding

initial domains:

V1 ∈ {1, 7, 10}, V2 ∈ {2, 8, 9, 11}, V3 ∈ {3, 5, 10, 12},

V4 ∈ {4, 6, 11}, V5 ∈ {3, 5, 11, 14}, V6 ∈ {4, 6, 12, 13, 15},

V7 ∈ {1, 7, 9, 14, 16}, V8 ∈ {2, 8, 10, 15}, V9 ∈ {2, 7, 9, 15},

V10 ∈ {1, 3, 8, 10, 16}, V11 ∈ {2, 4, 5, 11, 13}, V12 ∈ {3, 6, 12, 14},

V13 ∈ {6, 11, 13}, V14 ∈ {5, 7, 12, 14}, V15 ∈ {6, 8, 9, 15},

V16 ∈ {7, 10, 16}.

We introduce a variable N ∈ {1, 2, 3, 4} that provides the number of knights

actually used and state the following constraint:

nvalue(N, 〈V1, V2, V3, V4, V5, V6, V7, V8, V9,
V10, V11, V12, V13, V14, V15, V16〉)

In the previous constraint the assignment Vi = j means that a knight is

located on vertex j and that vertex j attacks vertex i. Consequently the total

number of distinct values in 〈V1, V2, . . . , V16〉 is equal to the total number of

used knights. The assignment

N = 4,

V1 = 7, V2 = 11, V3 = 10, V4 = 6,

V5 = 11, V6 = 6, V7 = 7, V8 = 10,

V9 = 7, V10 = 10, V11 = 11, V12 = 6,

V13 = 6, V14 = 7, V15 = 6, V16 = 7

corresponds to the solution depicted on the right.

B. Since a knight cannot protect itself, we only need to remove from the initial

domain of each variable the label corresponding to its cell. The assignment

N = 6,

V1 = 7, V2 = 8, V3 = 5, V4 = 6,

V5 = 14, V6 = 15, V7 = 14, V8 = 15,

V9 = 7, V10 = 8, V11 = 5, V12 = 6,

V13 = 6, V14 = 5, V15 = 6, V16 = 7

corresponds to the solution depicted on the right.

N N

N N

N N N N

N N

20000128 1841

