5.316 path_from_to

	DESCRIPTION	LINKS	GRAPH
Origin	[5]		
Constraint	<pre>path_from_to(FROM, TO, NODES)</pre>		
Usual name	path		
Arguments	FROM : int TO : int NODES : collection(index-	-int, succ-svar)	
Restrictions	$\begin{array}{l} {\sf FROM} \geq 1 \\ {\sf FROM} \leq {\sf NODES} \\ {\sf TO} \geq 1 \\ {\sf TO} \leq {\sf NODES} \\ {\sf required}({\sf NODES}, [{\sf index}, {\sf succ}]) \\ {\sf NODES.index} \geq 1 \\ {\sf NODES.index} \leq {\sf NODES} \\ {\sf distinct}({\sf NODES}, {\sf index}) \\ {\sf NODES.succ} \geq 1 \\ {\sf NODES.succ} \leq {\sf NODES} \\ \end{array}$)	
Purpose	Select some arcs of a digraph G so of G .	that there is still a pat	h between two given vertices
Example	$\left(\begin{array}{c} \text{index} - 1 & \text{succ} - 1\\ 4, 3, \left\langle\begin{array}{c} \text{index} - 2 & \text{succ} - 2\\ \text{index} - 3 & \text{succ} - 2\\ \text{index} - 4 & \text{succ} - 2\\ \text{index} - 4 & \text{succ} - 2\\ \text{index} - 5 & \text{succ} - 2\\ \text{index} - 2 & \text{index} - 2 & \text{succ} - 2\\ \text{index} - 2 & \text{index}$	$ \begin{array}{c} - \emptyset, \\ - \emptyset, \\ - \{5\}, \\ - \{5\}, \\ - \{2, 3\} \end{array} \right) $	
	The path_from_to constraint hol the item of the NODES collection the this path starts from vertex 4, enters	ds since within the re is a path from vertex vertex 5, and ends up in	digraph G corresponding to $FROM = 4$ to vertex $TO = 3$: in vertex 3.
Typical	$\begin{array}{l} \text{FROM} \neq \text{TO} \\ \text{NODES} > 2 \end{array}$		
Symmetry	Items of NODES are permutable.		
See also	<pre>common keyword: dom_reachabil link_set_to_booleans (constraint path, temporal_path (path). used in graph description: in_set.</pre>	Lity (path), involving set variables),

1954

20030820

Keywords

combinatorial object: path. constraint arguments: constraint involving set variables. constraint type: graph constraint. filtering: linear programming.

Arc input(s)	NODES
Arc generator	$CLIQUE \mapsto \texttt{collection}(\texttt{nodes1}, \texttt{nodes2})$
Arc arity	2
Arc constraint(s)	<pre>in_set(nodes2.index,nodes1.succ)</pre>
Graph property(ies)	$\mathbf{PATH_FROM_TO}(\mathtt{index}, \mathtt{FROM}, \mathtt{TO}) = 1$

Within the context of the **Example** slot, part (A) of Figure 5.640 shows the initial graph from which we choose to start. It is derived from the set associated with each vertex. Each set describes the potential values of the succ attribute of a given vertex. Part (B) of Figure 5.640 gives the final graph associated with the **Example** slot. Since we use the **PATH_FROM_TO** graph property we show on the final graph the following information:

- The vertices that respectively correspond to the start and the end of the required path are stressed in bold.
- The arcs on the required path are also stressed in bold.

The path_from_to constraint holds since there is a path from vertex 4 to vertex 3 (4 and 3 refer to the index attribute of a vertex).

Figure 5.640: Initial and final graph of the path_from_to set constraint

SignatureSince the maximum value returned by the graph property PATH_FROM_TO
is equal to 1 we can rewrite PATH_FROM_TO(index, FROM, TO) = 1
to PATH_FROM_TO(index, FROM, TO) \geq 1. Therefore we simplify
PATH_FROM_TO to PATH_FROM_TO.

1956

Graph model