
2018 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

5.334 same

DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint same(VARIABLES1, VARIABLES2)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
The variables of the VARIABLES2 collection correspond to the variables of the

VARIABLES1 collection according to a permutation.

Example (〈1, 9, 1, 5, 2, 1〉 , 〈9, 1, 1, 1, 2, 5〉)

The same constraint holds since values 1, 2, 5 and 9 have the same number of oc-

currences within both collections 〈1, 9, 1, 5, 2, 1〉 and 〈9, 1, 1, 1, 2, 5〉. Figure 5.663

illustrates this correspondence.

1 9 1 5 2 1
1 2 3 4 5 6

9 1 1 1 2 5
1 2 3 4 5 6

VARIABLES1

VARIABLES2

Figure 5.663: Illustration of the correspondence between the items of the VARIABLES1

and of the VARIABLES2 collections of the Example slot

All solutions Figure 5.664 gives all solutions to the following non ground instance of the same con-

straint: U1 ∈ [0, 2], U2 ∈ [1, 2], U3 ∈ [1, 2], V1 ∈ [0, 1], V2 ∈ [2, 4], V3 ∈ [2, 3],
same(〈U1, U2, U3〉, 〈V1, V2, V3〉).

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

All solutions
Example of all solutions for a non ground instance of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 2019

¬ (〈0, 2,2〉, 〈0,2,2〉)
­ (〈1, 2,2〉, 〈1,2,2〉)
® (〈2, 1,2〉, 〈1,2,2〉)
¯ (〈2, 2,1〉, 〈1,2,2〉)

Figure 5.664: All solutions corresponding to the non ground example of the same

constraint of the All solutions slot where identical values are coloured in the same way

in both collections

Symmetries • Arguments are permutable w.r.t. permutation (VARIABLES1, VARIABLES2).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value in VARIABLES1.var or

VARIABLES2.var can be renamed to any unused value.

Arg. properties
Aggregate: VARIABLES1(union), VARIABLES2(union).

Usage The same constraint can be used in the following contexts:

• Pairing problems taken from [48]. The organisation Doctors Without Borders has a

list of doctors and a list of nurses, each of whom volunteered to go on one mission

in the next year. Each volunteer specifies a list of possible dates and each mission

involves one doctor and one nurse. The task is to produce a list of pairs such that

each pair includes a doctor and a nurse who are available at the same date and each

volunteer appears in exactly one pair. The problem is modelled by a same(D =
d1, d2, . . . , dm, N = n1, n2, . . . , nm) constraint where each doctor is represented

by a domain variable in D and each nurse by a domain variable in N . For a given

doctor or nurse the corresponding domain variable gives the dates when the person

is available. When the number of nurses is different from the number of doctors we

replace the same constraint by a used by constraint.

• Timetabling problems where we wish to produce fair schedules for different persons

is a second use of the same constraint. Assume we need to generate a plan over a

period of D consecutive days for P persons. For each day d and each person p we

need to decide whether person p works in the morning shift, in the afternoon shift,

in the night shift or does not work at all on day d. In a fair schedule, the number

of morning shifts should be the same for all the persons. The same condition holds

for the afternoon and the night shifts as well as for the days off. We create for each

person p the sequence of variables vp,1, vp,2, . . . , vp,D . vp,D is equal to one of 0, 1, 2
and 3, depending on whether person p does not work, works in the morning, in the

afternoon or during the night on day d. We can use P −1 same constraints to express

the fact that v1,1, v1,2, . . . , v1,D should be a permutation of vp,1, vp,2, . . . , vp,D for

each (1 < p ≤ P).

• The same constraint can also be used as a channelling constraint for modelling the

following recurring pattern: given the number of 1s in each line and each column of

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

2020 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

a 0-1 matrix M with n rows and m columns, reconstruct the matrix. This pattern

usually occurs with additional constraints about compatible positions of the 1s, or

about the overall shape reconstructed from all the 1’s (e.g., convexity, connectivity).

If we restrict ourselves to the basic pattern there is an O(mn) algorithm for recon-

structing a m · n matrix from its horizontal and vertical directions [178]. We show

how to model this pattern with the same constraint. Let li (1 ≤ i ≤ n) and cj
(1 ≤ j ≤ m) denote respectively, the required number of 1s in the ith row and the

jth column of M. We number the entries of the matrix as shown in the left-hand side

of 5.665. For row i we create li domain variables vik where k ∈ [1, li]. Similarly,

for each column j we create cj domain variables ujk where k ∈ [1, ci]. The domain

of each variable contains the set of entries that belong to the row or column that the

variable corresponds to. Thus, each domain variable represents a 1 that appears in

the designated row or column. Let V be the set of variables corresponding to rows

and U be the set of variables corresponding to columns. To make sure that each 1
is placed in a different entry, we impose the constraint alldifferent(U). In ad-

dition, the constraint same(U ,V) enforces that the 1s exactly coincide on the rows

and the columns. A solution is shown on the right-hand side of 5.665. Note that the

same and global cardinality constraint allows to model the matrix reconstruc-

tion problem without the additional alldifferent constraint.

1 1 2 3 4

3 5 6 7 8

1 1 1 1

v11 ∈ {1, 5}

v21 ∈ {2, 6} v31 ∈ {3, 7}

v41 ∈ {4, 8}

u11 ∈ {1, 2, 3, 4}

u21 ∈ {5, 6, 7, 8}

u22 ∈ {5, 6, 7, 8}

u23 ∈ {5, 6, 7, 8}

same(〈u11, u21, u22, u23〉, 〈v11, v21, v22, v23〉)

0 0 1 0

1 1 0 1

same(〈5, 6, 3, 8〉, 〈3, 5, 6, 8〉)

Figure 5.665: Modelling the 0-1 matrix reconstruction problem with the same con-

straint (variable u11 corresponds to the position of value 1 in the first row, variables

u21, u22, u23 correspond to the position of value 1 in the second row, and variables

v11, v21, v31, v41 respectively to the positions of value 1 in the first, second, third and

fourth columns)

Remark The same constraint is a relaxed version of the sort constraint introduced in [297]. We do

not enforce the second collection of variables to be sorted in increasing order.

If we interpret the collections VARIABLES1 and VARIABLES2 as two multisets vari-

ables [240], the same constraint can be considered as an equality constraint between two

multisets variables.

The same constraint can be modelled by two global cardinality constraints. For in-

stance, the same constraint

same

(〈

var− x1, var− x2

〉

,
〈

var− y1, var− y2
〉

,

)

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20000128 2021

where the union of the domains of the different variables is {1, 2, 3, 4} corresponds to the

conjunction of the following two global cardinality constraints:

global cardinality













〈

var− x1, var− x2

〉

,

〈

val− 1 noccurrence − c1,
val− 2 noccurrence − c2,
val− 3 noccurrence − c3,
val− 4 noccurrence − c4

〉













global cardinality













〈

var− y1, var− y2
〉

,

〈

val− 1 noccurrence − c1,
val− 2 noccurrence − c2,
val− 3 noccurrence − c3,
val− 4 noccurrence − c4

〉













As shown by the next example, the consistency for all variables of the two

global cardinality constraints does not implies consistency for the corresponding

same constraint. This is for instance the case when the domains of x1, x2, y1 and y2
is respectively equal to {1, 2}, {3, 4}, {1, 2, 3, 4} and {3, 4}. The conjunction of the two

global cardinality constraints does not remove values 3 and 4 from y1.

In his PhD thesis, W.-J. van Hoeve introduces a soft version of the same constraint where

the cost is the minimum number of variables to assign differently in order to get back to

a solution [423, page 78]. In the context of the same constraint this violation cost corre-

sponds to the difference between the number of variables in VARIABLES1 and the number

of values that both occur in VARIABLES1 and in VARIABLES2 (provided that one value of

VARIABLES1 matches at most one value of VARIABLES2).

Algorithm In [47, 48, 49, 231], it is shown how to model this constraint by a flow network that

enables to compute arc-consistency and bound-consistency. The rightmost part of Fig-

ure 3.31 illustrates this flow model. Unlike the networks used for alldifferent and

global cardinality, the network now has three sets of nodes, so the algorithms are

more complex, in particular the efficient bound-consistency algorithm.

More recently [129, 130] presents a second filtering algorithm also achieving

arc-consistency based on a mapping of the solutions to the same constraint to perfect

matchings in a bipartite intersection graph derived from the domain of the variables of

the constraint in the following way. To each variable of the VARIABLES1 and VARIABLES2

collection corresponds a vertex of the intersection graph. There is an edge between a ver-

tex associated with a variable of the VARIABLES1 collection and a vertex associated with

a variable of the VARIABLES2 collection if and only if the corresponding variables have at

least one value in common in their domains.

Reformulation The same(VARIABLES1, VARIABLES2) constraint can be reformulated as the conjunction

sort(VARIABLES1, SORTED VARIABLES) ∧ sort(VARIABLES2, SORTED VARIABLES).

Used in k same.

See also generalisation: correspondence (PERMUTATION parameter added),

same interval (variable replaced by variable/constant),

same modulo (variable replaced by variable mod constant),

same partition (variable replaced by variable ∈ partition).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

2022 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

implied by: lex equal, same and global cardinality,

same and global cardinality low up, sort.

implies: same intersection, used by.

related to a common problem: colored matrix (matrix reconstruction problem).

soft variant: soft same var (variable-based violation measure).

system of constraints: k same.

used in reformulation: sort.

Keywords characteristic of a constraint: sort based reformulation, automaton,

automaton with array of counters.

combinatorial object: permutation, multiset.

constraint arguments: constraint between two collections of variables.

filtering: bipartite matching, flow, arc-consistency, bound-consistency, DFS-bottleneck.

modelling: channelling constraint, equality between multisets.

Keywords
Related keywords grouped by meta-keywords.

20000128 2023

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE=NSINK

• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure 5.666 respectively show the initial and final graph associated

with the Example slot. Since we use the NSOURCE and NSINK graph properties,

the source and sink vertices of the final graph are stressed with a double circle. Since there

is a constraint on each connected component of the final graph we also show the different

connected components. Each of them corresponds to an equivalence class according to the

arc constraint. The same constraint holds since:

• Each connected component of the final graph has the same number of sources and of

sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.

• The number of sinks of the final graph is equal to |VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-

inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-

lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and

sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-

fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite

NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to

NSINK.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

2024 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

CC#1 CC#2 CC#3 CC#4

1:1

2:1 3:14:1

3:16:1 2:9

1:9

4:5

6:5

5:2

5:2

Figure 5.666: Initial and final graph of the same constraint

20000128 2025

Automaton To each item of the collection VARIABLES1 corresponds a signature variable Si that is

equal to 0. To each item of the collection VARIABLES2 corresponds a signature variable

Si+|VARIABLES1| that is equal to 1.

arith(C,=, 0)

s{C[]← 0}

t

0,
{C[VARi]← C[VARi] + 1}

1,
{C[VARi]← C[VARi]− 1}

1,
{C[VARi]← C[VARi]− 1}

Figure 5.667: Automaton of the same constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

