5.343 sequence_folding

	DESCRIPTION	LINKS	GRAPH	AUTOMATON
Origin	J. Pearson			
Constraint	$\verb"sequence_folding(LETTERS)"$			
Argument	LETTERS : collection(in	dex-int,next-dvar	c)	
Restrictions	$\begin{split} \texttt{LETTERS} &\geq 1\\ \textbf{required}(\texttt{LETTERS}, [\texttt{index}, \texttt{n} \\ \texttt{LETTERS.index} &\geq 1\\ \texttt{LETTERS.index} &\leq \texttt{LETTERS} \\ \textbf{increasing_seq}(\texttt{LETTERS}, \texttt{in} \\ \texttt{LETTERS.next} &\geq 1\\ \texttt{LETTERS.next} &\leq \texttt{LETTERS} \end{split}$	ext]) ndex)		
Purpose	Express the fact that a sequence is modelled by a collection of le next letter l_2 located after l_1 that does not exist).	is folded in a way that tters. For each letter l_1 t is directly in contact	no crossing occurs. A so l of a sequence, we indi with l_1 (l_1 itself if such	equence cate the a letter
Example	$ \left(\begin{array}{c} \text{index} - 1 & \text{next} - 1 \\ \text{index} - 2 & \text{next} - 8 \\ \text{index} - 3 & \text{next} - 3 \\ \text{index} - 3 & \text{next} - 5 \\ \text{index} - 4 & \text{next} - 5 \\ \text{index} - 5 & \text{next} - 5 \\ \text{index} - 6 & \text{next} - 7 \\ \text{index} - 8 & \text{next} - 8 \\ \text{index} - 9 & \text{next} - 8 \\ \text{index} - 9 & \text{next} - 9 \\ \text{struct} - 9 \\ \text{next} $	equence associated wi n item. The sequence	th the previous example_folding constraint ho	e. Each lds since
Typical	$ \texttt{LETTERS} > 2\\ \texttt{range}(\texttt{LETTERS.next}) > 1$			
Usage	Motivated by RNA folding [167].			
See also	implies (items to collection): lex	alldifferent, lex.	chain_less.	
Keywords	application area: bioinformatics.			
	characteristic of a constraint: reified automaton constraint.	automaton,	automaton without	counters,

2054

Figure 5.677: Folded sequence (in blue) of the **Example** slot: links from a letter to a distinct letter are represented by a dashed arc, while self-loops are not drawn

combinatorial object: sequence. constraint type: decomposition. geometry: geometrical constraint.

Arc input(s)	LETTERS		
Arc generator	$SELF \mapsto \texttt{collection}(\texttt{letters})$		
Arc arity	1		
Arc constraint(s)	$\texttt{letters.next} \geq \texttt{letters.index}$		
Graph property(ies)	NARC= LETTERS		
Arc input(s)	LETTERS		
Arc generator	$CLIQUE(<) \mapsto \texttt{collection}(\texttt{letters1},\texttt{letters2})$		
Arc arity	2		
Arc constraint(s)	$\bigvee \left(\begin{array}{c} \texttt{letters2.index} \geq \texttt{letters1.next}, \\ \texttt{letters2.next} \leq \texttt{letters1.next} \end{array} ight)$		
Graph property(ies)	NARC = $ \text{LETTERS} * (\text{LETTERS} - 1)/2$		

Graph model

Parts (A) and (B) of Figure 5.678 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NARC** graph property, the arcs of the final graph are stressed in bold.

Figure 5.678: Initial and final graph of the sequence_folding constraint

Signature

Consider the first graph constraint. Since we use the SELF arc generator on the LETTERS collection the maximum number of arcs of the final graph is equal to |LETTERS|. Therefore

2056

we can rewrite the graph property NARC = |LETTERS| to $NARC \ge |LETTERS|$ and simplify \overline{NARC} to \overline{NARC} .

Consider now the second graph constraint. Since we use the CLIQUE(<) arc generator on the LETTERS collection the maximum number of arcs of the final graph is equal to $|\text{LETTERS}| \cdot (|\text{LETTERS}| - 1)/2$. Therefore we can rewrite the graph property $\mathbf{NARC} = |\text{LETTERS}| \cdot (|\text{LETTERS}| - 1)/2$ to $\mathbf{NARC} \geq |\text{LETTERS}| \cdot (|\text{LETTERS}| - 1)/2$ and simplify $\underline{\mathbf{NARC}}$ to $\overline{\mathbf{NARC}}$.

Automaton

Figure 5.679 depicts the automaton associated with the sequence_folding constraint. Consider the i^{th} and the j^{th} (i < j) items of the collection LETTERS. Let INDEX_i and NEXT_i respectively denote the index and the next attributes of the i^{th} item of the collection LETTERS. Similarly, let INDEX_j and NEXT_j respectively denote the index and the next attributes of the j^{th} item of the collection LETTERS. To each quadruple (INDEX_i, NEXT_i, INDEX_j, NEXT_j) corresponds a signature variable $S_{i,j}$, which takes its value in $\{0, 1, 2\}$, as well as the following signature constraint:

 $(INDEX_i \leq NEXT_i) \land (INDEX_j \leq NEXT_j) \land (NEXT_i \leq NEXT_j) \Leftrightarrow S_{i,j} = 0 \land$ $(INDEX_i \leq NEXT_i) \land (INDEX_j \leq NEXT_j) \land (NEXT_i > INDEX_j) \land (NEXT_j \leq NEXT_i) \Leftrightarrow$ $S_{i,j} = 1.$

Figure 5.679: Automaton of the sequence_folding constraint