5.351 sliding_sum

	DESCRIP	TION	LINKS	GRAPH	
Origin	CHIP				
Constraint	sliding_sum(LOW, UP, SEQ, VARIA	ABLES)		
Synonym	sequence.				
Arguments	LOW UP SEQ VARIABLES	: int : int : int : collection(v	ar-dvar)		
Restrictions	$\begin{subarray}{llllllllllllllllllllllllllllllllllll$	ABLES ARIABLES,var)			
Purpose			onsecutive variables of gs to interval [LOW, UP].	the collection VARIABLES so	
Example	$(3, 7, 4, \langle 1, 4 \rangle)$	$(4, 2, 0, 0, 3, 4\rangle)$			
	The example considers all sliding sequences of SEQ = 4 consecutive values of $\langle 1, 4, 2, 0, 0, 3, 4 \rangle$ collection and constraints the sum to be in [LOW, UP] = [3, 7]. The sliding_sum constraint holds since the sum associated with the corresponding subsequences 1 4 2 0, 4 2 0 0, 2 0 0 3, and 0 0 3 4 are respectively 7, 6, 5 and 7.				
Typical	$\begin{array}{l} \mbox{LOW} \geq 0 \\ \mbox{UP} > 0 \\ \mbox{SEQ} > 1 \\ \mbox{SEQ} < \mbox{VARIABLES.v} \\ \mbox{VARIABLES.v} \\ \mbox{UP} < \mbox{sum}(\mbox{VARIABLES.v}) \end{array}$				
Symmetry	Items of VARIA	BLES can be reverse	ed.		
Arg. properties	• Prefix-co	tible wrt. VARIABLE ontractible wrt. VAR ontractible wrt. VAR	IABLES.		
Algorithm	sliding_sum c constraint has a ciated with the	onstraint. In 2008, solution " <i>if and on</i> dual linear program	Maher <i>et al.</i> showed by there are no negative	plete filtering algorithm for the in [273] that the sliding_sum e cycles in the flow graph asso- njunction of inequalities. They ct.	

Systems	sliding.sum in MiniZinc.		
See also	common keyword: sliding_distribution(<i>sliding sequence constraint</i>).		
	part of system of constraints: sum_ctr.		
	soft variant: relaxed_sliding_sum.		
	used in graph description: sum_ctr.		
Keywords	characteristic of a constraint: hypergraph, sum.		
	combinatorial object: sequence.		
	constraint type: decomposition, sliding sequence constraint, system of constraints.		
	filtering: linear programming, flow, bound-consistency.		

Arc input(s)	VARIABLES
Arc generator	$PATH \mapsto \texttt{collection}$
Arc arity	SEQ
Arc constraint(s)	<pre>• sum_ctr(collection, ≥, LOW) • sum_ctr(collection, ≤, UP)</pre>
Graph property(ies)	$\mathbf{NARC} = \mathbf{VARIABLES} - \mathbf{SEQ} + 1$

We use sum_ctr as an arc constraint. sum_ctr takes a collection of domain variables as its first argument.

Parts (A) and (B) of Figure 5.687 respectively show the initial and final graph associated with the **Example** slot. Since all arc constraints hold (i.e., because of the graph property NARC = |VARIABLES| - SEQ + 1) the final graph corresponds to the initial graph.

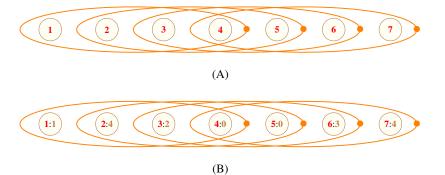


Figure 5.687: (A) Initial and (B) final graph of the sliding_sum $(3, 7, 4, \langle 1, 4, 2, 0, 0, 3, 4 \rangle)$ constraint of the **Example** slot where each ellipse represents an hyperedge involving SEQ = 4 vertices (e.g., the first ellipse represents the constraint $1 + 4 + 2 + 0 \in [3, 7]$)

Signature

Graph model

Since we use the *PATH* arc generator with an arity of SEQ on the items of the VARIABLES collection, the expression |VARIABLES| - SEQ + 1 corresponds to the maximum number of arcs of the final graph. Therefore we can rewrite the graph property **NARC** = |VARIABLES| - SEQ + 1 to **NARC** $\geq |VARIABLES| - SEQ + 1$ and simplify <u>NARC</u> to <u>NARC</u>.