
2100 NARC,SELF ;CLIQUE , SUCC

5.354 sliding time window sum

DESCRIPTION LINKS GRAPH

Origin Derived from sliding time window.

Constraint sliding time window sum(WINDOW SIZE, LIMIT, TASKS)

Arguments WINDOW SIZE : int

LIMIT : int

TASKS : collection(origin−dvar, end−dvar, npoint−dvar)

Restrictions WINDOW SIZE > 0
LIMIT ≥ 0
required(TASKS, [origin, end, npoint])
TASKS.origin ≤ TASKS.end

TASKS.npoint ≥ 0

Purpose
For any time window of size WINDOW SIZE, the sum of the points of the tasks of the

collection TASKS that overlap that time window do not exceed a given limit LIMIT.

Example













9, 16,

〈

origin − 10 end− 13 npoint− 2,
origin − 5 end− 6 npoint− 3,
origin − 6 end− 8 npoint− 4,
origin − 14 end− 16 npoint− 5,
origin − 2 end− 4 npoint− 6

〉













The lower part of Figure 5.691 indicates the different tasks on the time axis. Each

task is drawn as a rectangle with its corresponding identifier in the middle. Finally

the upper part of Figure 5.691 shows the different time windows and the respective

contribution of the tasks in these time windows. A line with two arrows depicts each time

window. The two arrows indicate the start and the end of the time window. At the right

of each time window we give its occupation. Since this occupation is always less than or

equal to the limit 16, the sliding time window sum constraint holds.

Typical WINDOW SIZE > 1
LIMIT > 0
LIMIT <sum(TASKS.npoint)
|TASKS| > 1
TASKS.origin < TASKS.end

TASKS.npoint > 0

Symmetries • WINDOW SIZE can be decreased.

• LIMIT can be increased.

• Items of TASKS are permutable.

• TASKS.npoint can be decreased to any value ≥ 0.

• One and the same constant can be added to the origin and end attributes of all

items of TASKS.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20030820 2101

°

6

­

3

®

4

¬

2

¯

5

5≤ LIMIT = 16

WINDOW SIZE = 9

2 + 5≤ LIMIT = 16

WINDOW SIZE = 9

4 + 2 + 5≤ LIMIT = 16

WINDOW SIZE = 9

3 + 4 + 2≤ LIMIT = 16

WINDOW SIZE = 9

6 + 3 + 4 + 2≤ LIMIT = 16

WINDOW SIZE = 9

0 1 3 4 7 8 92 5 6 11 12 13 15 16 17 18 19 20 21 22 2310 14

¬ origin − 10 end − 13 npoint − 2

­ origin − 5 end − 6 npoint − 3

® origin − 6 end − 8 npoint − 4

¯ origin − 14 end − 16 npoint − 5

° origin − 2 end − 4 npoint − 6

TASKS

Figure 5.691: Time windows and their use for the five tasks of the Example slot

Arg. properties
Contractible wrt. TASKS.

Usage This constraint may be used for timetabling problems in order to put an upper limit on the

cumulated number of points in a shift.

Reformulation The sliding time window sum constraint can be expressed in term of a set of |TASKS|2

reified constraints and of |TASKS| linear inequalities constraints:

1. For each pair of tasks TASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of the TASKS

collection we create a variable Point ij which is set to TASKS[j].npoint if

TASKS[j] intersects the time window Wi of size WINDOW SIZE that starts at instant

TASKS[i].origin, or 0 otherwise:

• If i = j (i.e., TASKS[i] and TASKS[j] coincide):

– Pointij = TASKS[i].npoint.

• If i 6= j and TASKS[j].end < TASKS[i].origin (i.e., TASKS[j] for sure ends

before the time window Wi):

– Pointij = 0.

• If i 6= j and TASKS[j].origin > TASKS[i].origin + WINDOW SIZE − 1
(i.e., TASKS[j] for sure starts after the time window Wi):

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

2102 NARC,SELF ;CLIQUE , SUCC

– Pointij = 0.

• Otherwise (i.e., TASKS[j] can potentially overlap the time window Wi):

– Pointij = min(1,max(0,min(TASKS[i].origin +
WINDOW SIZE, TASKS[j].end)−max(TASKS[i].origin, TASKS[j].origin)))·
TASKS[j].npoint.

2. For each task TASKS[i] (i ∈ [1, |TASKS|]) we create a linear inequality constraint

Pointi1 + Pointi2 + · · ·+ Point i|TASKS| ≤ LIMIT.

See also related: sliding time window (sum of the points of intersecting tasks with sliding time

window replaced by sum of intersections of tasks with sliding time window).

used in graph description: sum ctr.

Keywords characteristic of a constraint: time window, sum.

constraint type: sliding sequence constraint, temporal constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 2103

Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin ≤ tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TASKS

Arc generator CLIQUE 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.end ≤ tasks2.end

• tasks2.origin − tasks1.end < WINDOW SIZE− 1

Sets SUCC 7→




source,

variables − col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.npoint)]

)





Constraint(s) on sets sum ctr(variables,≤, LIMIT)

Graph model We generate an arc from a task t1 to a task t2 if task t2 does not end before the end of task

t1 and if task t2 intersects the time window that starts at the last instant of task t1. Each

set generated by SUCC corresponds to all tasks that intersect in time the time window that

starts at instant end− 1, where end is the end of a given task.

Parts (A) and (B) of Figure 5.692 respectively show the initial and final graph associated

with the Example slot. In the final graph, the successors of a given task t correspond to

the set of tasks that both do not end before the end of task t, and intersect the time window

that starts at the end− 1 of task t.

Signature Consider the first graph constraint. Since we use the SELF arc generator on the TASKS

collection the maximum number of arcs of the final graph is equal to |TASKS|. Therefore we

can rewrite NARC = |TASKS| to NARC ≥ |TASKS| and simplify NARC to NARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

2104 NARC,SELF ;CLIQUE , SUCC

TASKS

1

2

3

4

5

1:10,13,2

4:14,16,5

2:5,6,3

3:6,8,4

5:2,4,6

(A) (B)

Figure 5.692: Initial and final graph of the sliding time window sum constraint

20030820 2105

