5.358 soft_all_equal_min_var

	DESCRIPTION	LINKS	GRAPH
Origin	[149]		
Constraint	$soft_all_equal_min_var(N, VA)$	RIABLES)	
Arguments	N : dvar VARIABLES : collection((var-dvar)	
Restrictions	$\texttt{N} \geq 0$ required(VARIABLES, var)		
Purpose	Let M be the number of occurrent of the VARIABLES collection. Note that the VARIABLES collection minumber of variables that need to variables are assigned a same value of variables are assigned as the value of val	is greater than or equal nus M (i.e., N is greated be reassigned in order	to the total number of variables er than or equal to the minimum
Example	$(1, \langle 5, 1, 5, 5 \rangle)$ Within the collection $\langle 5, 1, 5, 5 \rangle$ signed value. Consequently, the argument N = 1 is greater than or	soft_all_equal_mi	n_var constraint holds since the
Typical	$\begin{array}{l} {\tt N} > 0 \\ {\tt N} < {\tt VARIABLES} \\ {\tt N} < {\tt VARIABLES} /10+2 \\ {\tt VARIABLES} > 1 \end{array}$	-	
Symmetries		istinct values of VARI	ABLES.var can be swapped; all e renamed to any unused value.
Algorithm	Let <i>m</i> denote the total number of p VARIABLES collection. In [149], achieving arc-consistency on the also provides an algorithm with a algorithms are based on the follow	E. Hebrard <i>et al.</i> prov soft_all_equal_min lower complexity for a	ides an $O(m)$ filtering algorithm _var constraint. The same paper
	the variables of the VARIAN potential value v of \mathcal{D} , the	BLES collection, i.e., a maximum number of	of the union \mathcal{D} of the domains of n array A that indicates for each variables that could possibly be um value over the entries of array

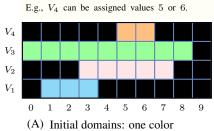
A, and let \mathcal{V}_{max_occ} denote the set of values which all occur in max_occ variables of the VARIABLES collection. The quantity $|VARIABLES| - max_occ$ is a lower bound of N.

- In a second phase, depending on the relative ordering between max_occ and the minimum value of |VARIABLES| − N, i.e., |VARIABLES| − N, we have the three following cases:
 - 1. When $max_occ < |VARIABLES| \overline{N}$, the constraint soft_all_equal_min_var simply fails since not enough variables of the VARIABLES collection can be assigned the same value.
 - 2. When $max_occ = |VARIABLES| \overline{N}$, the constraint soft_all_equal_min_var can be satisfied. In this context, a value v can be removed from the domain of a variable V of the VARIABLES collection if and only if:
 - (a) value v does not belong to \mathcal{V}_{max_occ} ,

(b) the domain of variable V contains all values of \mathcal{V}_{max_occ} .

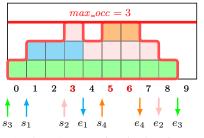
On the one hand, the first condition can be understand as the fact that value v is not a value that allows to have at least $|VARIABLES| - \overline{N}$ variables assigned the same value. On the other hand, the second condition can be interpreted as the fact that variable V is absolutely required in order to have at least $|VARIABLES| - \overline{N}$ variables assigned the same value.

3. When $max_occ > |VARIABLES| - \overline{N}$, the constraint soft_all_equal_min_var can be satisfied, but no value can be pruned.


Note that, in the context of range consistency, the first phase of the filtering algorithm can be interpreted as a sweep algorithm were:

- On the one hand, the *sweep status* corresponds to the maximum number of occurrence of variables that can be assigned a given value.
- On the other hand, the *event point series* correspond to the minimum values of the variables of the VARIABLES collection as well as to the maximum values (+1) of the same variables.

Figure 5.699 illustrates the previous filtering algorithm on an example where N is equal to 1, and where we have four variables V_1 , V_2 , V_3 and V_4 respectively taking their values within intervals [1, 3], [3, 7], [0, 8] and [5, 6] (see Part (A) of Figure 5.699, where the values of each variable are assigned a same colour that we retrieve in the other parts of Figure 5.699).

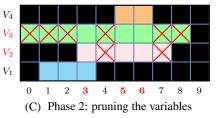
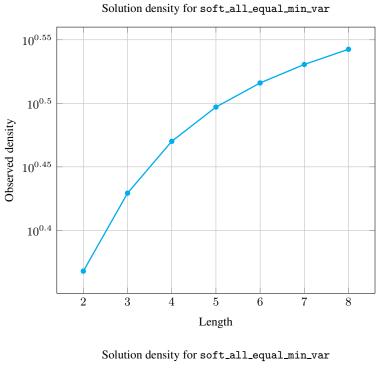

Part (B) of Figure 5.699 illustrates the first phase of the filtering algorithm, namely the computation of the envelope of the domains of variables V_1 , V_2 , V_3 and V_4 . The *start* events s_1 , s_2 , s_3 , s_4 (i.e., the events respectively associated with the minimum value of variables V_1 , V_2 , V_3 , V_4) where the envelope is increased by 1 are represented by the character \uparrow . Similarly, the *end events* (i.e., the events e_1 , e_2 , e_3 , e_4 respectively associated with the maximum value (+1) of V_1 , V_2 , V_3 , V_4 are represented by the character \downarrow). Since the highest peak of the envelope is equal to 3 we have that max_occ is equal to 3. The values that allow to reach this highest peak are equal to $\mathcal{V}_{max_occ} = \{3, 5, 6\}$ (i.e., shown in red in Part (B) of Figure 5.699).

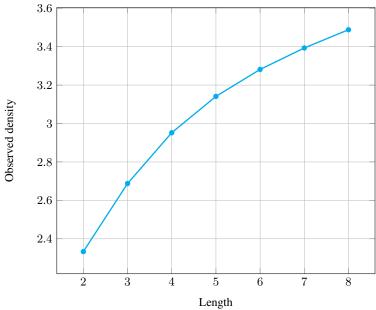
Finally, Part (C) of Figure 5.699 illustrates the second phase of the filtering algorithm. Since $max_occ = 3$ is equal to $|VARIABLES| - \overline{N} = 4 - 1$ we remove from the variables whose domains contain $\mathcal{V}_{max_occ} = \{3, 5, 6\}$ (i.e., variables V_2 and V_3) all values not in $\mathcal{V}_{max_occ} = \{3, 5, 6\}$ (i.e., values 4, 7 for variable V_2 and values 0, 1, 2, 4, 7, 8 for variable V_3).

for the values of each variable

Values 3, 5 and 6 represent the potentially most used values: removing all values 3, 5 and 6 from a variable whose domain contains all these three values does not allow to get three variables from V_1 , V_2 , V_3 , V_4 assigned to the same value.

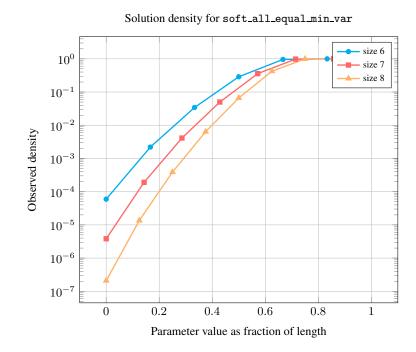
(B) Phase 1: computing the domains envelope (in red) from the sorted start and end events s₃, s₁, s₂, e₁, s₄, e₄, e₂, e₃ Variables V_2 and V_3 are the only variables whose domains contain $\{3, 5, 6\}$, and therefore candidate for pruning; each cross represents a pruned value.

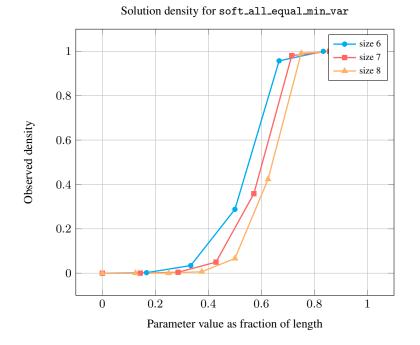




Figure 5.699: Illustration of the two phases filtering algorithm of the soft_all_equal_min_var $(1, \langle V_1, V_2, V_3, V_4 \rangle)$ constraint with $V_1 \in [1, 3], V_2 \in [3, 7], V_3 \in [0, 8]$ and $V_4 \in [5, 6]$

Counting

Ι	Length (n)	2	3	4	5	6	7	8
	Solutions	21	172	1845	24426	386071	7116320	150156873


Number of solutions for soft_all_equal_min_var: domains 0..n



Length (n)		2	3	4	5	6	7	8
Total		21	172	1845	24426	386071	7116320	150156873
	0	3	4	5	6	7	8	9
	1	9	40	85	156	259	400	585
Parameter	2	9	64	505	1656	4039	8632	16713
	3	-	64	625	7056	33859	104672	274761
	4	-	-	625	7776	112609	751472	2852721
value	5	-	-	-	7776	117649	2056832	18234801
	6	-	-	-	-	117649	2097152	42683841
	7	-	-	-	-	-	2097152	43046721
	8	-	-	-	-	-	-	43046721

Solution count for soft_all_equal_min_var: domains 0..n

See also	<pre>common keyword: soft_all_equal_max_var, soft_all_equal_min_ctr, soft_alldifferent_ctr, soft_alldifferent_var(soft constraint).</pre>						
	hard version: all_equ	al.					
	implied by: xor.						
	related: atmost_nvalue.						
Keywords	constraint type: variable-based violation	soft constraint, n measure.	value constraint,	relaxation,			
	filtering: arc-consistency, sweep.						

Arc input(s)	VARIABLES		
Arc generator	$CLIQUE \mapsto \texttt{collection}(\texttt{variables1}, \texttt{variables2})$		
Arc arity	2		
Arc constraint(s)	variables1.var = variables2.var		
Graph property(ies)	$MAX_NSCC \ge VARIABLES - N$		

We generate an initial graph with binary *equalities* constraints between each vertex and its successors. The graph property states that N is greater than or equal to the difference between the total number of vertices of the initial graph and the number of vertices of the largest strongly connected component of the final graph.

Parts (A) and (B) of Figure 5.700 respectively show the initial and final graph associated with the **Example** slot. Since we use the **MAX_NSCC** graph property we show one of the largest strongly connected components of the final graph.

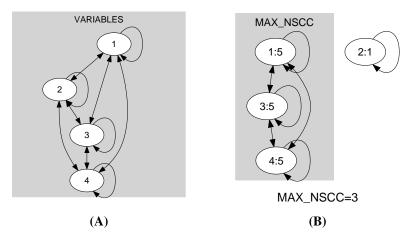


Figure 5.700: Initial and final graph of the soft_all_equal_min_var constraint

2128

Graph model