
2184NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NARC,PATH

5.371 sort

DESCRIPTION LINKS GRAPH

Origin [297]

Constraint sort(VARIABLES1, VARIABLES2)

Synonyms sortedness, sorted, sorting.

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose

First, the variables of the collection VARIABLES2 correspond to a permutation of the

variables of VARIABLES1. Second, the variables of VARIABLES2 are sorted in increasing

order.

Example (〈1, 9, 1, 5, 2, 1〉 , 〈1, 1, 1, 2, 5, 9〉)

The sort constraint holds since:

• Values 1, 2, 5 and 9 have the same number of occurrences within both collections

〈1, 9, 1, 5, 2, 1〉 and 〈1, 1, 1, 2, 5, 9〉. Figure 5.715 illustrates this correspondence.

• The items of collection 〈1, 1, 1, 2, 5, 9〉 are sorted in increasing order.

1 9 1 5 2 1

1 2 3 4 5 6

1 1 1 2 5 9

1 2 3 4 5 6

VARIABLES1

VARIABLES2

Figure 5.715: Illustration of the correspondence between the items of the VARIABLES1

and of the VARIABLES2 collections of the Example slot (note that the items of the

VARIABLES2 are sorted in increasing order)

All solutions Figure 5.716 gives all solutions to the following non ground instance of the sort constraint:

V1 ∈ [2, 3], V2 ∈ [2, 3], V3 ∈ [1, 2], V4 ∈ [4, 5], V5 ∈ [2, 4], S1 ∈ [2, 3], S2 ∈ [2, 3],
S3 ∈ [1, 3], S4 ∈ [4, 5], S5 ∈ [2, 5], sort(〈V1, V2, V3, V4, V5〉, 〈S1, S2, S3, S4, S5〉).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

All solutions
Example of all solutions for a non ground instance of the constraint.

20030820 2185

¬ (〈2, 2,2,4, 4〉, 〈2,2,2,4,4〉)

­ (〈2, 2,2,5, 4〉, 〈2,2,2,4,5〉)

® (〈2, 3,2,4, 4〉, 〈2,2,3,4,4〉)

¯ (〈2, 3,2,5, 4〉, 〈2,2,3,4,5〉)

° (〈3, 2,2,4, 4〉, 〈2,2,3,4,4〉)

± (〈3, 2,2,5, 4〉, 〈2,2,3,4,5〉)

² (〈3, 3,2,4, 4〉, 〈2,3,3,4,4〉)

³ (〈3, 3,2,5, 4〉, 〈2,3,3,4,5〉)

Figure 5.716: All solutions corresponding to the non ground example of the sort

constraint of the All solutions slot

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1

Symmetries • Items of VARIABLES1 are permutable.

• One and the same constant can be added to the var attributes of all items of

VARIABLES1 and VARIABLES2.

Arg. properties
Functional dependency: VARIABLES2 determined by VARIABLES1.

Usage The main usage of the sort constraint, that was not foreseen when the sort constraint

was invented, is its use in many reformulations. Many constraints involving one or several

collections of variables become much simpler to express when the variables of these col-

lections are sorted. In addition these reformulations typically have a size that is linear in

the number of variables of the original constraint. This justifies why the sort constraint is

considered to be a core constraint. As illustrative examples of these types of reformulations

we successively consider the alldifferent and the same constraints:

• The alldifferent(〈v1, v2, . . . , vn〉) constraint can be reformulated

as the conjunction sort(〈v1, v2, . . . , vn〉, 〈w1, w2, . . . , wn〉) ∧
strictly increasing(〈w1, w2, . . . , wn〉).

• The same(〈u1, u2, . . . , un〉, 〈v1, v2, . . . , vn〉) constraint can be reformu-

lated as the conjunction sort(〈u1, u2, . . . , un〉, 〈w1, w2, . . . , wn〉) ∧
sort(〈v1, v2, . . . , vn〉, 〈w1, w2, . . . , wn〉).

Remark A variant of this constraint called sort permutation was introduced in [449]. In this

variant an additional list of domain variables represents the permutation that allows to go

from VARIABLES1 to VARIABLES2.

Algorithm [78, 281].

Systems sorting in Choco, sorted in Gecode, sort in MiniZinc, sorting in SICStus.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntSorted.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#sort
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

2186NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NARC,PATH

See also generalisation: sort permutation (PERMUTATION parameter added).

implies: lex greatereq, same.

uses in its reformulation: alldifferent, same.

Keywords characteristic of a constraint: core, sort.

combinatorial object: permutation.

constraint arguments: constraint between two collections of variables,

pure functional dependency.

filtering: bound-consistency.

modelling: functional dependency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 2187

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE=NSINK

• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

Arc input(s) VARIABLES2

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var ≤ variables2.var

Graph property(ies) NARC= |VARIABLES2| − 1

Graph model Parts (A) and (B) of Figure 5.717 respectively show the initial and final graph associated

with the first graph constraint of the Example slot. Since it uses the NSOURCE and

NSINK graph properties, the source and sink vertices of this final graph are stressed with

a double circle. Since there is a constraint on each connected component of the final graph

we also show the different connected components. The sort constraint holds since:

• Each connected component of the final graph of the first graph constraint has the

same number of sources and of sinks.

• The number of sources of the final graph of the first graph constraint is equal to

|VARIABLES1|.

• The number of sinks of the final graph of the first graph constraint is equal to

|VARIABLES2|.

• Finally the second graph constraint holds also since its corresponding final graph

contains exactly |VARIABLES1 − 1| arcs: all the inequalities constraints between

consecutive variables of VARIABLES2 holds.

Signature Consider the first graph constraint. Since the initial graph contains only sources and sinks,

and since isolated vertices are eliminated from the final graph, we make the following

observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-

lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and

sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-

fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite

NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to

NSINK.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

2188NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NARC,PATH

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

NSOURCE=6,NSINK=6

CC#1 CC#2 CC#3 CC#4

1:1

1:1 2:13:1

3:16:1 2:9

6:9

4:5

5:5

5:2

4:2

Figure 5.717: Initial and final graph of the sort constraint

20030820 2189

Consider now the second graph constraint. Since we use the PATH arc generator with an

arity of 2 on the VARIABLES2 collection, the maximum number of arcs of the final graph

is equal to |VARIABLES2| − 1. Therefore we can rewrite the graph property NARC =
|VARIABLES2| − 1 to NARC ≥ |VARIABLES2| − 1 and simplify NARC to NARC.

Quiz

EXERCISE 1 (checking whether a ground instance holds or not)a

A. Does the constraint sort(〈1, 0, 0, 1〉, 〈0, 0, 1〉) hold?

B. Does the constraint sort(〈3, 5, 3, 1〉, 〈1, 3, 5〉) hold?

C. Does the constraint sort(〈2, 4, 2, 2, 4〉, 〈2, 2, 2, 4, 4〉) hold?

D. Does the constraint sort(〈2, 4, 2, 2, 4〉, 〈4, 4, 2, 2, 2〉) hold?

aHint: go back to the definition of sort.

EXERCISE 2 (finding all solutions)a

Give all the solutions to the constraint:























X1 ∈ [2, 4], X2 ∈ [2, 3], X3 ∈ [0, 5], X4 ∈ [6, 8], X5 ∈ [3, 6],
Y1 ∈ [3, 4], Y2 ∈ [2, 3], Y3 ∈ [0, 5], Y4 ∈ [6, 8], Y5 ∈ [3, 6],

sort

(

〈X1, X2, X3, X4, X5〉,
〈Y1, Y2, Y3, Y4, Y5〉

)

.

aHint: first filter the bounds of the variables of the second argument wrt the chain

of precedences; second, since the second argument can be computed from the first

one, focus on the variables of the first argument and enumerate solutions in lexico-

graphic order.

Quiz
A set of small exercises for checking that the meaning of the constraint is well understood.

2190NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NARC,PATH

SOLUTION TO EXERCISE 1

A. No, since 〈1, 0, 0, 1〉
and 〈0, 0, 1〉 do not

have the same number

of elements.

B. No, since 〈3, 5, 3, 1〉
and 〈1, 3, 5〉 do not

have the same number

of elements.

C. Yes, since 〈2, 2, 2, 4, 4〉
is a permutation of

〈2, 4, 2, 2, 4〉 and since

the elements 2, 2, 2, 4, 4 are

sorted in non-decreasing order.

D. No, since the elements

of 〈4, 4, 2, 2, 2〉 are

not sorted in non-decreasing

order.

1 0 10

1 2 43

0 0 1

1 2 3

3 5 13

1 2 43

1 3 5

1 2 3

2 4 2 2 4

1 2 3 4 5

2 2 2 4 4

1 2 3 4 5

2 4 2 2 4

1 2 3 4 5

4 4 2 2 2

1 2 3 4 5

20030820 2191

SOLUTION TO EXERCISE 2

〈X1, X2, X3, X4, X5〉, 〈Y1, Y2, Y3, Y4, Y5〉

¬ (〈3, 3,3,6,6〉, 〈3,3,3,6,6〉)

­ (〈3, 3,4,6,6〉, 〈3,3,4,6,6〉)

® (〈3, 3,5,6,6〉, 〈3,3,5,6,6〉)

¯ (〈4, 3,3,6,6〉, 〈3,3,4,6,6〉)

the four solutions

3 3 3 6 6

1 2 3 4 5

3 3 3 6 6

1 2 3 4 5

solution ¬

3 3 4 6 6

1 2 3 4 5

3 3 4 6 6

1 2 3 4 5

solution ­

3 3 5 6 6

1 2 3 4 5

3 3 5 6 6

1 2 3 4 5

solution ®

4 3 3 6 6

1 2 3 4 5

3 3 4 6 6

1 2 3 4 5

solution ¯

