5.376 stretch_path

	DESCRIPTION	LINKS	GRAPH	AUTOMATON
Origin	[305]			
Constraint	<pre>stretch_path(VARIABLES,VALU</pre>	JES)		
Usual name	stretch			
Arguments	VARIABLES : collection(x VALUES : collection(x	var-dvar) val-int,lmin-int,lm	max-int)	
Restrictions	<pre> VARIABLES > 0 required(VARIABLES, var) VALUES > 0 required(VALUES, [val, lmin, distinct(VALUES, val) VALUES.lmin ≥ 0 VALUES.lmin ≤ VALUES.lmax VALUES.lmin ≤ VARIABLES </pre>	lmax])		
Purpose	 In order to define the meaning of the tions of stretch and span. Let n be Let X_i,, X_j (1 ≤ i ≤ j ≤ n) VARIABLES such that the followin All variables X_i,, X_j attribute, i = 1 or X_{i-1} is different j = n or X_{j+1} is different we call such a set of variables a while the value of the stretch is stretch_path constraint. Each item (val - v, lmin - s minimum value s as well as the pover consecutive variables of the value v show VARIABLES. It rather mean must have a span that below A variable of the collection fined in the VALUES collection. 	the stretch_path constr the number of variables be consecutive variables be consecutive variables ag conditions apply: take a same value from from X_i , from X_j . stretch. The span of the X_i . We now define th x_i . We now define the x_i . We now define the x_i . We now define the x_i . We now define the x_i . We now define the x_i . We now define the x_i . We now define the x_i . We now define the x_i . We now define the x_i . We now define the x_i . We now define the x_i . We now define the x_i . We now define the x_i . We now defi	raint, we first introduce to of the collection VARIA s of the collection of var a the set of values of the stretch is equal to j — the condition enforced to LUES collection enforced to span of a stretch of var h <i>s</i> strictly greater than to of the variables of coll used, all stretches of var ssigned a value that is n	the no- BLES. iables i + 1, by the es the alue v 0 does ection alue v ot de-

2212

Example	Exam	ple
---------	------	-----

((6	, 6, 3, 1, 1, 1	1, 6, 6 angle,	
	val-1	$\mathtt{lmin}-2$	lmax - 4,
	$\mathtt{val}-2$	$\mathtt{lmin}-2$	lmax - 3,
	val-3	$\mathtt{lmin}-1$	lmax - 6, /
()	$\mathtt{val}-6$	$\mathtt{lmin}-2$	lmax - 2 /

The stretch_path constraint holds since the sequence 6 6 3 1 1 1 6 6 contains four stretches 6 6, 3, 1 1 1, and 6 6 respectively verifying the following conditions:

- The span of the first stretch 6 6 is located within interval [2, 2] (i.e., the limit associated with value 6).
- The span of the second stretch 3 is located within interval [1, 6] (i.e., the limit associated with value 3).
- The span of the third stretch $1 \ 1 \ 1$ is located within interval [2, 4] (i.e., the limit associated with value 1).
- The span of the fourth stretch 6 6 is located within interval [2, 2] (i.e., the limit associated with value 6).

Typical	$\begin{split} \texttt{VARIABLES} &> 1\\ \texttt{range}(\texttt{VARIABLES.var}) &> 1\\ \texttt{VARIABLES} &> \texttt{VALUES} \\ \texttt{VALUES} &> 1\\ \texttt{sum}(\texttt{VALUES.lmin}) &\leq \texttt{VARIABLES} \\ \texttt{VALUES.lmax} &\leq \texttt{VARIABLES} \end{split}$
Symmetries	 Items of VARIABLES can be reversed. Items of VALUES are permutable. All occurrences of two distinct values in VARIABLES.var or VALUES.val can be swapped; all occurrences of a value in VARIABLES.var or VALUES.val can be renamed to any unused value.
Usage	The article [305], which originally introduced the stretch constraint, quotes rostering problems as typical examples of use of this constraint.
Remark	We split the original stretch constraint into the stretch_path and the stretch_circuit constraints that respectively use the $PATH \ LOOP$ and the $CIRCUIT \ LOOP$ arc generators. We also reorganise the parameters: the VALUES collection describes the attributes of each value that can be assigned to the variables of the stretch_path constraint. Finally we skipped the pattern constraint that tells what values can follow a given value. A extension of this constraint (i.e., stretch plus pattern), called forced_shift_stretch, where one can specify for each value v with a 0-1 variable, whether it should occur at least once or not at all, was proposed in [209]. By reduction to Hamiltonian path it was shown that enforcing arc-consistency for forced_shift_stretch is NP-hard [209].

Algorithm A first filtering algorithm was described in the original article of G. Pesant [305]. A second filtering algorithm, based on dynamic programming, achieving arc-consistency is depicted in [208, 209]. It also handles the fact that some values can be followed by only a given

subset of values. An other alternative achieving arc-consistency is to use the automaton described in the Automaton slot. stretchPath in Choco, stretch in JaCoP. Systems See also common keyword: change_continuity, group (timetabling constraint), group_skip_isolated_item(timetabling constraint, sequence), min_size_full_zero_stretch (sequence), pattern (sliding sequence constraint, timetabling constraint), sliding_distribution (sliding sequence constraint), stretch_circuit (sliding sequence constraint, timetabling constraint). generalisation: stretch_path_partition(variable replaced by variable \in partition). uses in its reformulation: stretch_circuit. Keywords characteristic of a constraint: automaton without counters, automaton, reified automaton constraint. combinatorial object: sequence. constraint network structure: Berge-acyclic constraint network. constraint type: timetabling constraint, sliding sequence constraint. filtering: dynamic programming, arc-consistency. final graph structure: consecutive loops are connected.

2214

For all items of VALUES:

Arc input(s)	VARIABLES
Arc generator	$PATH \mapsto collection(variables1, variables2)$ $LOOP \mapsto collection(variables1, variables2)$
Arc arity	2
Arc constraint(s)	 variables1.var = VALUES.val variables2.var = VALUES.val
Graph property(ies)	• $not_in(MIN_NCC, 1, VALUES.lmin - 1)$ • $MAX_NCC \leq VALUES.lmax$

Graph model

Part (A) of Figure 5.734 shows the initial graphs associated with values 1, 2, 3 and 6 of the **Example** slot. Part (B) of Figure 5.734 shows the corresponding final graphs associated with values 1, 3 and 6. Since value 2 is not assigned to any variable of the VARIABLES collection the final graph associated with value 2 is empty. The stretch_path constraint holds since:

- For value 1 we have one connected component for which the number of vertices 3 is greater than or equal to 2 and less than or equal to 4,
- For value 2 we do not have any connected component,
- For value 3 we have one connected component for which the number of vertices 1 is greater than or equal to 1 and less than or equal to 6,
- For value 6 we have two connected components that both contain two vertices: this is greater than or equal to 2 and less than or equal to 2.

Figure 5.734: Initial and final graph of the stretch_path constraint

During the presentation of this constraint at CP'2001 the following point was mentioned: it could be useful to allow domain variables for the minimum and the maximum values of a stretch. This could be achieved in the following way: the lmin (respectively lmax) attribute would now be a domain variable that gives the size of the shortest (respectively longest) stretch. Finally within the **Graph property(ies)** slot we would replace \geq (and \leq) by =.

Automaton

Let n and m respectively denote the quantities |VARIABLES| and |VALUES|. Furthermore, let val_i , $lmin_i$ and $lmax_i$, $(i \in [1, m])$, respectively be shortcuts for the expressions VALUES[i].val, VALUES[i].lmin and VALUES[i].lmax. Without loss of generality, we assume that all the lmin attributes of the items of the VALUES collection are at least equal to 1. The following automaton \mathcal{A} involving $1 + lmax_1 + lmax_2 + \cdots + lmax_m$ states only accepts solutions to the stretch_path constraint. Automaton \mathcal{A} has the following states:

- an initial state s that is also an accepting state,
- $\forall i \in [1, m], \forall j \in [1, \lim_{i \to j} -1]$, a non-accepting state $s_{i,j}$,
- $\forall i \in [1, m], \forall j \in [\texttt{lmin}_i, \texttt{lmax}_i]$, an accepting state $s_{i,j}$.

Transitions of \mathcal{A} are defined in the following way:

- $\forall i \in [1, m]$, a transition from s to $s_{i,1}$ labelled by condition $X_l = val_i$,
- a transition from s to s labelled by condition $X_l \neq \operatorname{val}_1 \land X_l \neq \operatorname{val}_2 \land \cdots \land X_l \neq \operatorname{val}_m$,
- $\forall i \in [1, m], \forall j \in [\texttt{lmin}_i, \texttt{lmax}_i]$, a transition from $s_{i,j}$ to s labelled by condition $X_l \neq \texttt{val}_1 \land X_l \neq \texttt{val}_2 \land \cdots \land X_l \neq \texttt{val}_m$,
- $\forall i \in [1, m], \forall j \in [1, lmax_i 1]$, a transition from $s_{i,j}$ to $s_{i,j+1}$ labelled by condition $X_l = val_i$,
- $\forall i \in [1, m], \forall j \in [\texttt{lmin}_i, \texttt{lmax}_i], \forall k \neq i \in [1, m]$, a transition from $s_{i,j}$ to $s_{k,1}$ labelled by condition $X_l = \texttt{val}_k$.

Figure 5.735 depicts the automaton associated with the stretch_path constraint of the **Example** slot. Transitions labels 0, 1, 2, 3 and 4 respectively correspond to the conditions $X_l \neq 1 \land X_l \neq 2 \land X_l \neq 3 \land X_l \neq 6$, $X_l = 1$, $X_l = 2$, $X_l = 3$, $X_l = 6$ (since values 1, 2, 3 and 6 respectively correspond to the values of the first, second, third and fourth item of the VALUES collection). The stretch_path constraint holds since the corresponding sequence of visited states, $s \ s_{41} \ s_{42} \ s_{31} \ s_{11} \ s_{12} \ s_{13} \ s_{41} \ s_{42}$, ends up in an accepting state (i.e., accepting states are denoted graphically by a double circle in the figure).

Figure 5.735: Automaton of the stretch_path constraint of the **Example** slot (states related to a same stretch have the same colour)