PREDEFINED

5.386 sum_free

2254

·	
	DESCRIPTION LINKS
Origin	[428]
Constraint	<pre>sum_free(S)</pre>
Argument	S : svar
Purpose	Impose for all pairs of values (not necessarily distinct) i , j of the set S the fact that the sum $i + j$ is not an element of S.
Example	$(\{1,3,5,9\})$
	The sum_free($\{1, 3, 5, 9\}$) constraint holds since:
	• $1+1=2 \notin S$, $1+3=4 \notin S$, $1+5=6 \notin S$, $1+9=10 \notin S$.
	• $3+3=6 \notin S$, $3+5=8 \notin S$, $3+9=12 \notin S$.
	• $5+5=10 \notin S$, $5+9=14 \notin S$.
Usage	The sum_free constraint was introduced by WJ. van Hoeve and A. Sabharwal in order to model in a concise way Schur problems.
	 On one hand, the first model has n domain variables x_i (1 ≤ i ≤ n), where x_i corresponds to the subset in which element i occurs. The constraints x_i = s ∧ x_j = s ⇒ x_{i+j} ≠ s (s ∈ [1, k], i, j ∈ [1, n], i ≤ j, i + j ≤ n) enforce that the k subsets are sum-free. We have O(k · n²) such constraints.
	• On the other hand, the model proposed by WJ. van Hoeve and A. Sabharwal represents in an explicit way with a set variable S_i $(1 \le i \le n)$ each subset of the partition we are looking for. Now, to express the fact that these k subsets are sum-free they simply use k sum_free constraints of the form sum_free (S_i) .
	While the two models have the same behaviour when we focus on the number of backtracks the second model is much more efficient from a memory point of view.
Algorithm	WJ. van Hoeve and A. Sabharwal have proposed an algorithm that enforces bound-consistency for the sum_free constraint in [428].
Keywords	constraint arguments: unary constraint, constraint involving set variables.
	constraint type: predefined constraint.
	filtering: bound-consistency.
	problems: Schur number.