
2312 NARC,SELF ;PRODUCT , SUCC

5.402 track

DESCRIPTION LINKS GRAPH

Origin [274]

Constraint track(NTRAIL, TASKS)

Arguments NTRAIL : int

TASKS : collection(trail−int, origin−dvar, end−dvar)

Restrictions NTRAIL > 0
NTRAIL ≤ |TASKS|
|TASKS| > 0
required(TASKS, [trail, origin, end])
TASKS.origin ≤ TASKS.end

Purpose

The track constraint forces that, at each point in time overlapped by at least one task,

the number of distinct values of the trail attribute of the set of tasks that overlap that

point, is equal to NTRAIL.

Example













2,

〈

trail− 1 origin− 1 end− 2,
trail− 2 origin− 1 end− 2,
trail− 1 origin− 2 end− 4,
trail− 2 origin− 2 end− 3,
trail− 2 origin− 3 end− 4

〉













Figure 5.761 represents the tasks of the example: to the ith task of the TASKS

collection corresponds a rectangle labelled by i. The track constraint holds since:

• The first and second tasks both overlap instant 1 and have a respective trail of 1 and

2. This makes two distinct values for the trail attribute at instant 1.

• The third and fourth tasks both overlap instant 2 and have a respective trail of 1 and

2. This makes two distinct values for the trail attribute at instant 2.

• The third and fifth tasks both overlap instant 3 and have a respective trail of 1 and 2.

This makes two distinct values for the trail attribute at instant 3.

Typical NTRAIL < |TASKS|
|TASKS| > 1
range(TASKS.trail) > 1
TASKS.origin < TASKS.end

Symmetries • Items of TASKS are permutable.

• All occurrences of two distinct values of TASKS.trail can be swapped; all occur-

rences of a value of TASKS.trail can be renamed to any unused value.

• One and the same constant can be added to the origin and end attributes of all

items of TASKS.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20030820 2313

¬ ®

­ ¯ °

time

NTRAIL =

0 1 2 3 4 5

#
tr

ai
ls

1

2

1 2

colour codes (trail):

¬ trail − 1 origin − 1 end − 2

­ trail − 2 origin − 1 end − 2

® trail − 1 origin − 2 end − 4

¯ trail − 2 origin − 2 end − 3

° trail − 2 origin − 3 end − 4

TASKS

Figure 5.761: The tasks associated with the example of the Example slot, at each

instant we have two distinct values for the trail attribute (NTRAIL = 2)

Reformulation The track constraint can be expressed in term of a set of reified constraints and of 2 ·
|TASKS| nvalue constraints:

1. For each pair of tasks TASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of the TASKS collec-

tion we create a variable T
origin

ij which is set to the trail attribute of task TASKS[j]
if task TASKS[j] overlaps the origin attribute of task TASKS[i], and to the trail at-

tribute of task TASKS[i] otherwise:

• If i = j:

– T
origin

ij = TASKS[i].trail.

• If i 6= j:

– T
origin

ij = TASKS[i].trail ∨ T
origin

ij = TASKS[j].trail.

– ((TASKS[j].origin ≤ TASKS[i].origin ∧
TASKS[j].end > TASKS[i].origin) ∧ (T origin

ij = TASKS[j].trail)) ∨
((TASKS[j].origin > TASKS[i].origin ∨
TASKS[j].end ≤ TASKS[i].origin) ∧ (T origin

ij = TASKS[i].trail))

2. For each task TASKS[i] (i ∈ [1, |TASKS|]) we impose the number of distinct trails

associated with the tasks that overlap the origin of task TASKS[i] (TASKS[i] overlaps

its own origin) to be equal to NTRAIL:

nvalue(NTRAIL, 〈T origin

i1 , T
origin

i2 , . . . , T
origin

i|TASKS|〉).

3. For each pair of tasks TASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of the TASKS collec-

tion we create a variable T end
ij which is set to the trail attribute of task TASKS[j] if

task TASKS[j] overlaps the end attribute of task TASKS[i], and to the trail attribute

of task TASKS[i] otherwise:

• If i = j:

– T end
ij = TASKS[i].trail.

• If i 6= j:

– T end
ij = TASKS[i].trail ∨ T end

ij = TASKS[j].trail.

– ((TASKS[j].origin ≤ TASKS[i].end − 1 ∧
TASKS[j].end > TASKS[i].end − 1) ∧ (T end

ij = TASKS[j].trail)) ∨
((TASKS[j].origin > TASKS[i].end − 1 ∨
TASKS[j].end ≤ TASKS[i].end − 1) ∧ (T end

ij = TASKS[i].trail))

4. For each task TASKS[i] (i ∈ [1, |TASKS|]) we impose the number of distinct trails

associated with the tasks that overlap the end of task TASKS[i] (TASKS[i] overlaps its

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

2314 NARC,SELF ;PRODUCT , SUCC

own end) to be equal to NTRAIL:

nvalue(NTRAIL, 〈T end
i1 , T end

i2 , . . . , T end
i|TASKS|〉).

With respect to the Example slot we get the following conjunction of nvalue constraints:

• The nvalue(2, 〈1, 2, 1, 1, 1〉) constraint corresponding to the trail attributes of the

tasks that overlap the origin of the first task (i.e., instant 1) that has a trail of 1.

• The nvalue(2, 〈1, 2, 2, 2, 2〉) constraint corresponding to the trail attributes of the

tasks that overlap the origin of the second task (i.e., instant 1) that has a trail of 2.

• The nvalue(2, 〈1, 1, 1, 2, 1〉) constraint corresponding to the trail attributes of the

tasks that overlap the origin of the third task (i.e., instant 2) that has a trail of 1.

• The nvalue(2, 〈2, 2, 1, 2, 2〉) constraint corresponding to the trail attributes of the

tasks that overlap the origin of the fourth task (i.e., instant 2) that has a trail of 2.

• The nvalue(2, 〈2, 2, 1, 2, 2〉) constraint corresponding to the trail attributes of the

tasks that overlap the origin of the fifth task (i.e., instant 3) that has a trail of 2.

• The nvalue(2, 〈1, 2, 1, 1, 1〉) constraint corresponding to the trail attributes of the

tasks that overlap the last instant of the first task (i.e., instant 1) that has a trail of 1.

• The nvalue(2, 〈1, 2, 2, 2, 2〉) constraint corresponding to the trail attributes of the

tasks that overlap the last instant of the second task (i.e., instant 1) that has a trail of

2.

• The nvalue(2, 〈1, 1, 1, 1, 2〉) constraint corresponding to the trail attributes of the

tasks that overlap the last instant of the third task (i.e., instant 3) that has a trail of 1.

• The nvalue(2, 〈2, 2, 1, 2, 2〉) constraint corresponding to the trail attributes of the

tasks that overlap the last instant of the fourth task (i.e., instant 2) that has a trail of

2.

• The nvalue(2, 〈2, 2, 1, 2, 2〉) constraint corresponding to the trail attributes of the

tasks that overlap the last instant of the fifth task (i.e., instant 3) that has a trail of 2.

See also common keyword: coloured cumulative (resource constraint).

implies (items to collection): atleast nvector.

used in graph description: nvalue.

Keywords characteristic of a constraint: derived collection.

constraint type: timetabling constraint, resource constraint, temporal constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 2315

Derived Collection

col





























TIME POINTS−collection





origin−dvar,

end−dvar,

point−dvar



 ,

















item





origin − TASKS.origin,

end− TASKS.end,

point − TASKS.origin



 ,

item





origin − TASKS.origin,

end− TASKS.end,

point − TASKS.end − 1

















































Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin ≤ tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TIME POINTS TASKS

Arc generator PRODUCT 7→collection(time points, tasks)

Arc arity 2

Arc constraint(s) • time points.end > time points.origin

• tasks.origin ≤ time points.point

• time points.point < tasks.end

Sets SUCC 7→




source,

variables − col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.trail)]

)





Constraint(s) on sets nvalue(NTRAIL, variables)

Graph model Parts (A) and (B) of Figure 5.762 respectively show the initial and final graph of the second

graph constraint of the Example slot.

Signature Consider the first graph constraint. Since we use the SELF arc generator on the TASKS

collection, the maximum number of arcs of the final graph is equal to |TASKS|. Therefore

we can rewrite NARC = |TASKS| to NARC ≥ |TASKS| and simplify NARC to

NARC.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

2316 NARC,SELF ;PRODUCT , SUCC

(A)

TIME_POINTS

TASKS

1

12 345

23456 78910

(B)

TIME_POINTS

TASKS

1:1,2,1

1:1,1,22:2,1,2

2:1,2,13:1,2,14:1,2,15:2,4,2

3:1,2,4 4:2,2,3

6:2,4,3

5:2,3,4

7:2,3,28:2,3,29:3,4,310:3,4,3

Figure 5.762: Initial and final graph of the track constraint

20030820 2317

