
2318 MAX NSCC,NCC,CLIQUE

5.403 tree

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint tree(NTREES, NODES)

Arguments NTREES : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NTREES ≥ 1
NTREES ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Given a digraph G described by the NODES collection, cover G by a set of NTREES trees

in such a way that each vertex of G belongs to one distinct tree. The edges of the trees

are directed from their leaves to their respective roots.

Example

























2,

〈

index− 1 succ− 1,
index− 2 succ− 5,
index− 3 succ− 5,
index− 4 succ− 7,
index− 5 succ− 1,
index− 6 succ− 1,
index− 7 succ− 7,
index− 8 succ− 5

〉

















































8,

〈

index− 1 succ− 1,
index− 2 succ− 2,
index− 3 succ− 3,
index− 4 succ− 4,
index− 5 succ− 5,
index− 6 succ− 6,
index− 7 succ− 7,
index− 8 succ− 8

〉

















































7,

〈

index− 1 succ− 6,
index− 2 succ− 2,
index− 3 succ− 3,
index− 4 succ− 4,
index− 5 succ− 5,
index− 6 succ− 6,
index− 7 succ− 7,
index− 8 succ− 8

〉

























Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 2319

The first tree constraint holds since the graph associated with the items of the

NODES collection corresponds to two trees (i.e., NTREES = 2): each tree respectively

involves the vertices {1, 2, 3, 5, 6, 8} and {4, 7}. They are depicted by Figure 5.763.

1|1

5|1

2|5 3|5 8|5

6|1

7|7

4|7

index − 1 succ − 1

index − 2 succ − 5

index − 3 succ − 5

index − 4 succ − 7

index − 5 succ − 1

index − 6 succ − 1

index − 7 succ − 7

index − 8 succ − 5

NODES

Figure 5.763: The two trees corresponding to the first example of the Example slot;

each vertex contains the information index|succ where succ is the index of its father

in the tree (by convention the father of the root is the root itself).

All solutions Figure 5.764 gives all solutions to the following non ground instance of the tree con-

straint: NTREES ∈ [3, 4], S1 ∈ [1, 2], S2 ∈ [1, 3], S3 ∈ [1, 4], S4 ∈ [2, 4],
tree(NTREES, 〈1 S1, 2 S2, 3 S3, 4 S4〉).

¬ (3, 〈11,12,33,44〉)
­ (3, 〈11,22,13,44〉)
® (3, 〈11,22,23,44〉)
¯ (3, 〈11,22,33,24〉)
° (3, 〈11,22,33,34〉)
± (4, 〈11,22,33,44〉)
² (3, 〈11,22,43,44〉)
² (3, 〈11,32,33,44〉)
´ (3, 〈21,22,33,44〉)

Figure 5.764: All solutions corresponding to the non ground example of the tree

constraint of the All solutions slot (the index attribute is displayed as indices of the

succ attribute)

Typical NTREES < |NODES|
|NODES| > 2

Symmetry Items of NODES are permutable.

Arg. properties
Functional dependency: NTREES determined by NODES.

Remark Given a complete digraph of n vertices as well as an unrestricted number of trees NTREES,

the total number of solutions to the corresponding tree constraint corresponds to the se-

quence A000272 of the On-Line Encyclopaedia of Integer Sequences [392].

All solutions
Example of all solutions for a non ground instance of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://oeis.org/A000272

2320 MAX NSCC,NCC,CLIQUE

Extension of the tree constraint to the minimum spanning tree constraint is described

in [143, 349, 352].

Algorithm An arc-consistency filtering algorithm for the tree constraint is described in [42]. This

algorithm is based on a necessary and sufficient condition that we now depict.

To any tree constraint we associate the digraph G = (V,E), where:

• To each item NODES[i] of the NODES collection corresponds a vertex vi of G.

• For every pair of items (NODES[i], NODES[j]) of the NODES collection, where i and j

are not necessarily distinct, there is an arc from vi to vj in E if and only if j is a

potential value of NODES[i].succ.

A strongly connected component C of G is called a sink component if all the successors

of all vertices of C belong to C. Let MINTREES and MAXTREES respectively denote the

number of sink components of G and the number of vertices of G with a loop.

The tree constraint has a solution if and only if:

• Each sink component of G contains at least one vertex with a loop,

• The domain of NTREES has at least one value within interval [MINTREES, MAXTREES].

Inspired by the idea of using dominators used in [223] for getting a linear time algo-

rithm for computing strong articulation points of a digraph G, the worst case complexity

of the algorithm proposed in [42] was also enhanced in a similar way by J.-G. Fages and

X. Lorca [157].

Reformulation The tree constraint can be expressed in term of (1) a set of |NODES|2 reified constraints

for avoiding circuit between more than one node and of (2) |NODES| reified constraints and

of one sum constraint for counting the trees:

1. For each vertex NODES[i] (i ∈ [1, |NODES|]) of the NODES collection we create a

variable Ri that takes its value within interval [1, |NODES|]. This variable represents

the rank of vertex NODES[i] within a solution. It is used to prevent the creation of

circuit involving more than one vertex as explained now. For each pair of vertices

NODES[i], NODES[j] (i, j ∈ [1, |NODES|]) of the NODES collection we create a reified

constraint of the form NODES[i].succ = NODES[j].index ∧ i 6= j ⇒ Ri < Rj .

The purpose of this constraint is to express the fact that, if there is an arc from vertex

NODES[i] to another vertex NODES[j], then Ri should be strictly less than Rj .

2. For each vertex NODES[i] (i ∈ [1, |NODES|]) of the NODES collection we cre-

ate a 0-1 variable Bi and state the following reified constraint NODES[i].succ =
NODES[i].index ⇔ Bi in order to force variable Bi to be set to value 1 if and

only if there is a loop on vertex NODES[i]. Finally we create a constraint NTREES =
B1 +B2 + · · ·+B|NODES| for stating the fact that the number of trees is equal to the

number of loops of the graph.

Counting

Length (n) 2 3 4 5 6 7 8

Solutions 3 16 125 1296 16807 262144 4782969

Number of solutions for tree: domains 0..n

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Counting
Information on the solution density.

20000128 2321

2 3 4 5 6 7 8
10−1

10−0.9

10−0.8

10−0.7

10−0.6

10−0.5

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for tree

2 3 4 5 6 7 8

0.1

0.15

0.2

0.25

0.3

0.35

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for tree

2322 MAX NSCC,NCC,CLIQUE

Length (n) 2 3 4 5 6 7 8

Total 3 16 125 1296 16807 262144 4782969

Parameter

value

1 2 9 64 625 7776 117649 2097152

2 1 6 48 500 6480 100842 1835008

3 - 1 12 150 2160 36015 688128

4 - - 1 20 360 6860 143360

5 - - - 1 30 735 17920

6 - - - - 1 42 1344

7 - - - - - 1 56

8 - - - - - - 1

Solution count for tree: domains 0..n

0.2 0.4 0.6 0.8 1

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for tree

size 6

size 7

size 8

20000128 2323

0.2 0.4 0.6 0.8 1

0

2

4

6

·10−2

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for tree

size 6

size 7

size 8

Systems tree in Choco.

See also common keyword: cycle, graph crossing, map (graph partitioning constraint),

proper forest (connected component,tree).

implied by: binary tree.

implies (items to collection): atleast nvector.

related: balance tree (counting number of trees versus controlling

how balanced the trees are), global cardinality low up no loop,

global cardinality no loop (can be used for restricting number of children

since discard loops associated with tree roots).

shift of concept: stable compatibility, tree range, tree resource.

specialisation: binary tree (no limit on the number of children replaced by at most two

children), path (no limit on the number of children replaced by at most one child).

uses in its reformulation: tree range, tree resource.

Keywords constraint type: graph constraint, graph partitioning constraint.

filtering: DFS-bottleneck, strong articulation point, arc-consistency.

final graph structure: connected component, tree, one succ.

modelling: functional dependency.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

2324 MAX NSCC,NCC,CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • MAX NSCC≤ 1
• NCC= NTREES

Graph model We use the graph property MAX NSCC ≤ 1 in order to specify the fact that the size

of the largest strongly connected component should not exceed one. In fact each root of

a tree is a strongly connected component with a single vertex. The second graph property

NCC = NTREES enforces the number of trees to be equal to the number of connected

components.

Parts (A) and (B) of Figure 5.765 respectively show the initial and final graph associated

with the first example of the Example slot. Since we use the NCC graph property, we

display the two connected components of the final graph. Each of them corresponds to a

tree. The tree constraint holds since all strongly connected components of the final graph

have no more than one vertex and since NTREES = NCC = 2.

NODES

1

2

3

4

5

6

7

8

MAX_NSCC=1,NCC=2

CC#1 CC#2

1:1,1

2:2,5

5:5,1

3:3,5

6:6,1

8:8,5 4:4,7

7:7,7

(A) (B)

Figure 5.765: Initial and final graph of the tree constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 2325

