UCA - Master Hydroprotech - 2024

Mathematical optimization: introduction and application to water management

Sophie Demassey https://sofdem.github.io/

Centre de Mathématiques Ap

- collect, treat, distribute, value water as a commodity ex: design and operate wastewater networks under normal or extreme conditions

- mobilize water in processes as a resource with limited availability ex: withdraw water for cooling or cleaning while preserving water source quality

- preserve a biotope, or deal with a natural hazard involving water ex: adapt landscape to flood resilience

water management?

accuracy

Operational effective process

operational research: models and algorithms

decision & management

system design

Strategic long-term planning

time

prospective: data and scenarios

- overview of prescriptive tools in decision support
- focus on mathematical optimization and discrete decision
 - model and solve mathematical programs
- selected applications in water management

this class

prescriptive tools in decision support

from WWII: Value mathematical programming

in the 2010s: Al, deep learning

in the 2000s: business analytics, big data

decision support

Source: Gartner

Decision Making

identify possible alternatives, attach a quantitative score, search an alternative with the highest score

Optimization

model : describe the feasible solutions objective: a mapping from solutions to scores optimize : compute a feasible solution of maximum score

decide = optimize

physical and virtual/numerical models simulators: *imperative* "how"

models

$$\begin{split} \min \sum_{k=1}^{K} \sum_{j=1}^{n} d_{jk} \\ s.t. \ d_{jk} &\geq \sum_{i=1}^{p} (m_{j}^{i} - y_{k}^{i})^{2} - \overline{d}_{jk} (1 - x_{jk}) \\ &\sum_{k=1}^{K} x_{jk} = 1 \quad \forall j \\ &x_{jk} \in \{0,1\}, y_{k}^{i} \in \mathbb{R}, d_{jk} \geq 0 \end{split}$$

$\Delta; \Gamma, \alpha$ (a. F)	$\Delta; \Gamma, \beta$			
$\frac{\Delta; \Gamma, \alpha_1}{\Delta; \Gamma, \alpha_2} \stackrel{(\alpha - \Gamma)}{=} $	$\Delta; \Gamma, \top \mid \Delta; \Gamma, \beta_1, \beta$			
	$\Delta; \Gamma, A, \neg A$			
$\frac{\Delta; \Gamma, \neg \neg A}{\Delta; \Gamma, A} (\neg \neg \neg \Gamma)$	Δ; Γ, Τ			
$\Delta, \alpha; \Gamma$	$\Delta, \beta; \Gamma$			
$\frac{\Delta, \alpha; \Gamma}{\Delta, \alpha_1, \alpha_2; \Gamma} (\alpha \text{-} \Delta)$	$\Delta, \beta_1; \Gamma \mid \Delta, \beta_2; I$			
$\Delta, A, \neg A; \Gamma$	Δ, Α; Γ, Α			
$\frac{\Delta, A, \neg A; \Gamma}{\Delta, \blacksquare; \Gamma}$ (■)	$\Delta, A; \Gamma, \top$			

conceptual models formulation: *declarative* "what"

input layer

hidden layer 1 hidden layer 2 hidden layer 3

models

$$\begin{split} \min \sum_{k=1}^{K} \sum_{j=1}^{n} d_{jk} \\ s.t. \ d_{jk} &\geq \sum_{i=1}^{p} (m_{j}^{i} - y_{k}^{i})^{2} - \bar{d}_{jk}(1 - x_{jk}) \\ &\sum_{k=1}^{K} x_{jk} = 1 \quad \forall j \\ &x_{jk} \in \{0,1\}, y_{k}^{i} \in \mathbb{R}, d_{jk} \geq 0 \end{split}$$

created by experts **maybe reinforced automatically from data** (machine learning)

`											
	40	2/0	201202	50612	55/55	25991	27540	45057	55220	0275	
,	35	-50	73787	28083	1439	2240	2746	3687	5293	2740	
	48	101	758353	383745	201999	62107	36293	130536	57243	25354	
	57	-5	2E+06	129350	61236	17084	11488	62462	49960	33932	
	53	-8	1E+06	354328	37102	88881	45307	99603	44790	29749	
	66	73	2E+06	176766	59352	26157	15054	33669	33782	31750	
	69	130	635191	122446	90107	65072	36230	53019	62938	59307	
	61	-2	161098	12119	1963	809	1277	3186	3266	2518	
	69	17	492796	120998	63697	68242	10769	88403	73756	22676	
	69	-59	82048	116131	47317	26197	41642	28866	32551	41810	
	38	-14	757165	186196	3242	3841	18854	43021	46799	11928	
	48	72	667513	141854	75050	16234	45926	34496	74875	31839	
	34	121	165360	42119	3158	6256	7270	19462	10984	8148	
	30	-52	737665	84275	2235	38748	21705	28343	80927	24735	
•	48	69	577024	179555	25937	21604	43790	44432	69203	25586	
	43	44	234964	80944	7991	32568	11828	63682	41013	18147	
	40	144	671467	133227	7142	14300	23373	65591	47860	16501	
	40	25	33290	14729	10980	10407	14316	37112	60378	36306	
	44	-138	1E+06	268122	67285	36996	10083	80826	90350	26345	
	53	25	756442	97387	59785	32241	16122	53157	44602	14331	
	66	124	87109	7200	4987	2817	2130	11413	9422	4922	
	53	43	802937	83858	3229	7895	27104	17791	18901	12191	
	51	35	157687	283941	27259	47930	15132	38238	31599	10121	
	50	119	613031	758257	246386	132015	26636	83848	94542	56127	
	27	27	602204	47242	2215	2011	1060	7210	7075	1522	

$\forall j, k$

accuracy & approximation Mathematical Optimization

Decision Making

concrete problem

practical decision

solving, optimizing: find a solution to a model not to a problem

 $\min f(x) : g_i(x) = 0 \ \forall i = 1,...,m$ $x \in \mathbb{R}^n$

solve a model not a problem

- imprecise (truncated) and uncertain (forecast) data
- approximate dynamics and simplified (soften) constraints
- conceptual objective

solve a model?

- solution may be infeasible or feasible within a tolerance gap
- solution may be sub-optimal or optimal within a tolerance gap

solution may not be provably optimal, neither globally nor locally theoretic \neq practical optimality guarantees: high complexity, slow convergence, limited time

Model describes the system behavior

Simulation evaluates behavior and score for one given input decision

Optimization search the input decision leading to the highest score different problems, different needs \longrightarrow many algorithms

different classes of algorithms:

- local/global, exact/heuristic
- deterministic/stochastic
- generic/specific

operational research

2 main principles:

- generate & test
- divide & conquer

black-box or numerical methods:

1. select a candidate decision 2. simulate/evaluate feasibility and score 3. stop or iterate

which candidates to evaluate?

search: partial, exhaustive, exhaustive but implicit **choice**: random/probabilistic or directed by distance, score, highest-order information (e.g. derivative of the objective function)

generate & test: principle

examples:

- algorithm in linear programming
- metaheuristics (evolutionary, swarm): combine candidates, use collective memory

generate & test: algorithms

- local search: move to a neighbour candidate, the best one or in an improving direction may converge to a global optimum, e.g.: gradient descent in convex optimization, simplex

divide-and-conquer:

- 1. separate the search space (and refine the model)
- 2. estimate feasibility and best score in a simpler relaxed model
- 3. **backtrack** if not better, record if full solution, or iterate

relaxation/bounding (the maximal score):

- relaxations and best lower bound (LB) computed on full solutions
- rely on tight but simple relaxations

divide & conquer: principle

- certificate of optimality: zero-gap between best upper bound (UB) estimated from the

divide & conquer: algorithms

examples:

- greedy heuristic: no backtrack
- graph algorithms, dynamic programming
- backtracking methods in logic/constraint programming
- branch-and-bound in combinatorial optimization

one person's solution should not become another person's problem

(to keep in mind when modeling)

mathematica

$\min f(x) : g(x) \le 0, x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$

- $f: \mathbb{R}^n \mapsto \mathbb{R}$ objective
- $g: \mathbb{R}^n \times \mathbb{R}^m \mapsto \mathbb{R}^m$ constraints
- $x \in \mathbb{R}^n$ variables / solution

mathematical program

Pipe Sizing

Choose the diameter of two water distribution pipes to maximize the total rate of flow, within a budget of 180 euros, given that: 1st pipe: maximum diameter = 40cm, cost=3 euros/cm, avg rate=3u/cm - 2nd pipe: maximum diameter = 60cm, cost=2 euros/cm, avg rate=5u/cm

variables: diameters for the pipes (in cm) constraints: bounds and budget objective: maximize flow rate

 $max \ 3x_1 + 5x_2$: $0 \le x_1 \le 40, \ 0 \le x_2 \le 60$ $3x_1 + 2x_2 \le 180$

 $max \ 3x_1 + 5x_2$: $0 \le x_1 \le 40, \ 0 \le x_2 \le 60$ $3x_1 + 2x_2 \le 180$

linear case: graphical solution

- constraints define half-spaces in \mathbb{R}^2
- intersection = poyhedron = feasible solutions
- solutions of cost p: point in line $3x_1 + 5x_2 = p$
- optimal solution: corner on the highest line
- $x = (20,60) \operatorname{cost} p = 3 * 20 + 5 * 60 = 360$

variables: diameters for the pipes (in cm) constraints: bounds and budget objective: max flow rate

$\min f(x) : g(x) \le 0, x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$

well-solved classes:

f,g linear p=0

mathematical program

- linear programming
- f convex, $g \equiv 0$, p = 0 unconstrained optimization
- f, g smooth convex p = 0 convex programming
 - f, g linear p > 1 mixed integer linear programming

Mixed Integer Linear Program off/on status $x \in \{0,1\}$, operation level $l \in \{0,1,\ldots,N\}$

covers discrete decisions: **covers logical relations:** $l \le N(1 - x)$ level is 0 if status is on: $x = 1 \implies l = 0$ covers nonlinear relations: $l = \sum i x_i, y = \sum f_i x_i, 1 = \sum x_i, x_i \in \{0, 1\} \forall i \in \{0, ..., N\}$ i=0i=0

y = f(l) a discrete function

discrete

i=0

Groundwater abstraction (identical pumps) and minimize the global cost, given:

variables: $x_j \in \{0,1\}$ number of pumps installed at $j \in J$

min $\sum c_i x_i$: $\underline{Q} \le \sum q_j x_j \le \overline{Q}, \sum x_j \le 3$ $x_a + x_b \le 1, x \in \{0,1\}^J$

my first MILP

- Choose places to install pumps within a finite set J of candidates
 - installation cost c_i and average flow rate q_i of a pump at place $j \in J$ – limited total abstraction rate: lower Q and upper \overline{Q} limits – at most 3 pumps installed, no 2 pumps on places a and $b \in J$

Groundwater abstraction (distinct available pumps) – limited abstraction Q, Q

variant MILP

- Assign available pumps taken from a finite set K:
 - installation cost c_k and flow rate q_k now depends on pump $k \in K$
 - variables: $x_{ik} = 1$ if pump $k \in K$ installed at place $j \in J$

cutting-plane algorithm branch-and-bound branch-and-cut

- based on the LP relaxation
- evaluate, refine, iterate
- separate (on discrete variables), estimate, backtrack/iterate refine then estimate

MLP algorithms

performance sophisticated solvers

optimality primal-dual bounds

large-scale decomposition methods

declarative equations, not algorithms

versatile covers logic & nonlinear

flexible general-purpose format & solvers

performance sophisticated solvers *still NP-hard: scale to some extent (or consider LP) optimality primal-dual bounds MLP perks*

> large-scale decomposition methods *algorithmic challenge

declarative equations, not algorithms *good model ?

versatile covers logic & nonlinear * approximation (or consider MINLP)

flexible general-purpose format & solvers *generic ≠ best

