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- collect, treat, distribute, value water as a commodity 

water management ?
ex: design and operate wastewater networks under normal or extreme conditions 

- mobilize water in processes as a resource with limited availability
ex: withdraw water for cooling or cleaning while preserving water source quality 

- preserve a biotope,  or deal with a natural hazard involving water 
ex: adapt landscape to flood resilience
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StrategicTacticalOperational

decision & management

time

accuracy

effective process system design long-term planning

prospective: data and scenariosoperational research: models and algorithms  3



this class

- overview of  prescriptive tools in decision support 

- focus on mathematical optimization and discrete decision  

- model and solve mathematical programs 

- selected applications in water management  
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prescriptive tools  
in decision support
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donnée brute

connaissance

information

donnée numérique

décision

prédiction

datawarehouse 
visualisation

datamining

machine learning

optimization

decision support

in the 2000s:  
business analytics, 
big data 

in the 2010s:  
AI, deep learning 

from  WWII:  
mathematical programming 
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Decision Making identify possible alternatives, attach a quantitative score, 
 search an alternative with the highest score        

Optimization

decide = optimize

model : describe the feasible solutions 
objective: a mapping from solutions to scores 
optimize : compute a feasible solution of maximum score 
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physical and virtual/numerical models

min
K

∑
k=1

n

∑
j=1

djk

s . t . djk ≥
p

∑
i=1

(mi
j − yi

k)2 − djk(1 − xjk) ∀j, k

K

∑
k=1

xjk = 1 ∀j

xjk ∈ {0,1}, yi
k ∈ ℝ, djk ≥ 0

conceptual models

modelssimulators: imperative "how" 

formulation: declarative "what" 
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min
K

∑
k=1

n

∑
j=1

djk

s . t . djk ≥
p

∑
i=1

(mi
j − yi

k)2 − djk(1 − xjk) ∀j, k

K

∑
k=1

xjk = 1 ∀j

xjk ∈ {0,1}, yi
k ∈ ℝ, djk ≥ 0

models

(machine learning)

created by experts
maybe reinforced 

 automatically from data
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Decision Making Mathematical Optimization

concrete problem 

practical decision

abstract model 

(optimal) solution
solve

min
x∈ℝn

f(x) : gi(x) = 0 ∀i = 1,...,m

accuracy & approximation

solving, optimizing: find a solution to a model not to a problem10

≠



- imprecise (truncated) and uncertain (forecast) data 
- approximate dynamics and simplified (soften) constraints 
- conceptual objective

 ‘solve’
solve a model not a problem

solve a model ?

- solution may be infeasible or feasible within a tolerance gap 
- solution may be sub-optimal or optimal within a tolerance gap 
- solution may not be provably optimal, neither globally nor locally 
- theoretic ≠ practical optimality guarantees: high complexity, slow convergence, limited time
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Model describes the system behavior    

Optimization

optimize
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Simulation evaluates behavior and score for one given input decision   

search the input decision leading to the highest score

di"erent classes of algorithms: 
- local/global, exact/heuristic 
- deterministic/stochastic 
- generic/specific

2 main principles: 
- generate & test 
- divide & conquer

different problems, different needs           many algorithms operational  
research



generate & test: principle

black-box or numerical methods:
1. select a candidate decision 
2. simulate/evaluate feasibility and score  
3. stop or iterate

which candidates to evaluate ? 
search: partial, exhaustive, exhaustive but implicit 
choice: random/probabilistic or directed by distance, score, highest-order information (e.g: 
derivative of the objective function)
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generate & test: algorithms

- local search: move to a neighbour candidate, the best one or in an improving direction 
- may converge to a global optimum, e.g.: gradient descent in convex optimization, simplex 

algorithm in linear programming 
- metaheuristics (evolutionary, swarm): combine candidates, use collective memory

examples:
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gradient 
descent

ant  
colony

genetic 
algorithm



divide & conquer: principle
divide-and-conquer:
1. separate the search space (and refine the model) 
2. estimate feasibility and best score in a simpler relaxed model 
3. backtrack if not better, record if full solution, or iterate 

relaxation/bounding (the maximal score):

- certificate of optimality: zero-gap between best upper bound (UB) estimated from the 
relaxations and best lower bound (LB) computed on full solutions  

- rely on tight but simple relaxations

X

X
X
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divide & conquer: algorithms

- greedy heuristic: no backtrack 
- graph algorithms, dynamic programming  
- backtracking methods in logic/constraint programming 
- branch-and-bound in combinatorial optimization

examples:

X

X
X
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one person’s solution  
should not become  

another person’s problem

(to keep in mind when modeling)



mathematical  
optimization
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mathematical program

  min f(x) : g(x) ≤ 0, x ∈ ℤp × ℝn−p

 objective 
 constraints  

 variables / solution

f : ℝn ↦ ℝ
g : ℝn × ℝm ↦ ℝm

x ∈ ℝn
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my first MP
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Choose the diameter of two water distribution pipes  
to maximize the total rate of flow, within a budget of 180 euros, given that: 
- 1st pipe: maximum diameter = 40cm, cost=3 euros/cm, avg rate=3u/cm 
- 2nd pipe: maximum diameter = 60cm, cost=2 euros/cm, avg rate=5u/cm 

Pipe Sizing

variables: diameters for the pipes (in cm) 
constraints:  bounds and budget 
objective: maximize flow rate

max 3x1 + 5x2 :
0 ≤ x1 ≤ 40, 0 ≤ x2 ≤ 60
3x1 + 2x2 ≤ 180



my first MP
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variables: diameters for the pipes (in cm) 
constraints:  bounds and budget 
objective: max flow rate

max 3x1 + 5x2 :
0 ≤ x1 ≤ 40, 0 ≤ x2 ≤ 60
3x1 + 2x2 ≤ 180

linear case: graphical solution
- constraints define half-spaces in  
- intersection = poyhedron = feasible solutions 

- solutions of cost : point in line  

- optimal solution: corner on the highest line 

-  cost 

ℝ2

p 3x1 + 5x2 = p

x = (20,60) p = 3 * 20 + 5 * 60 = 360



mathematical program

  min f(x) : g(x) ≤ 0, x ∈ ℤp × ℝn−p

 linear   
 convex, ,  
 smooth convex  

 linear 

f, g p = 0
f g ≡ 0 p = 0

f, g p = 0
f, g p > 1

linear programming 
unconstrained optimization 
convex programming 
mixed integer linear programming

well-solved classes:
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Mixed Integer Linear Program
covers discrete decisions: off/on status , operation level  x ∈ {0,1} l ∈ {0,1,…, N}
covers logical relations: l ≤ N(1 − x) level is 0 if status is on:   x = 1 ⟹ l = 0

covers nonlinear relations: l =
N

∑
i=0

ixi, y =
N

∑
i=0

fixi, 1 =
N

∑
i=0

xi, xi ∈ {0,1}∀i ∈ {0,…, N}

 a discrete function y = f(l)

discrete setup piecewise linear
23



my first MILP
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Choose places to install pumps within a finite set  of candidates 
and minimize the global cost, given: 

- installation cost  and average flow rate  of a pump at place  

- limited total abstraction rate: lower  and upper  limits 

- at most 3 pumps installed, no 2 pumps on places  and 

J

cj qj j ∈ J
Q Q

a b ∈ J

Groundwater abstraction (identical pumps)

variables: number of pumps installed at   xj ∈ {0,1} j ∈ J

min ∑ cjxj :

Q ≤ ∑ qjxj ≤ Q, ∑ xj ≤ 3

xa + xb ≤ 1, x ∈ {0,1}J



variant MILP

25

Assign available pumps taken from a finite set : 

- installation cost  and flow rate  now depends on pump  

- limited abstraction 

K
ck qk k ∈ K

Q, Q

Groundwater abstraction (distinct available pumps)

variables: if pump  installed at place   xjk = 1 k ∈ K j ∈ Jmin ∑
k

∑
j

ckxjk :

Q ≤ ∑
k

∑
j

qkxjk ≤ Q

xjk ∈ {0,1} ∀j ∈ J, k ∈ K

∑
j

xjk ≤ 1 ∀k ∈ K

∑
k

xjk ≤ 1 ∀j ∈ J



MILP algorithms
branch-and-bound 

- based on the LP relaxation 

- evaluate, refine, iterate 

- separate (on discrete variables), estimate, backtrack/iterate 

- refine then estimate

cutting-plane algorithm

branch-and-cut 
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MILP perks
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declarative
equations, not algorithmsperformance

sophisticated solvers

flexible
general-purpose format & solvers

versatile
covers logic & nonlinear 

large-scale
decomposition methods

optimality
primal-dual bounds



MILP perks*
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declarative
equations, not algorithmsperformance

sophisticated solvers

flexible
general-purpose format & solvers

versatile
covers logic & nonlinear 

large-scale
decomposition methods

optimality
primal-dual bounds

*still NP-hard: scale to some extent  
(or consider LP) 

*approximation  
(or consider MINLP) 

*good model ?

*generic ≠ best
*algorithmic challenge


