Mathematical optimization: introduction and application to water management

water management?

- collect, treat, distribute, value water as a commodity
ex: design and operate wastewater networks under normal or extreme conditions
- mobilize water in processes as a resource with limited availability
ex: withdraw water for cooling or cleaning while preserving water source quality
- preserve a biotope, or deal with a natural hazard involving water
ex: adapt landscape to flood resilience

decision \& management

accuracy

Operational effective process

Tactical
system design

Strategic
long-term planning

this class

- overview of prescriptive tools in decision support
- focus on mathematical optimization and discrete decision
- model and solve mathematical programs
- selected applications in water management

Y presciptivetools indecision suppopot

decision support

from WWII:

mathematical programming

optimization

in the 2010s: Al, deep learning
in the 2000s:
business analytics, big data

decide = optimize

Decision Making

identify possible alternatives, attach a quantitative score, search an alternative with the highest score

Optimization

model : describe the feasible solutions objective: a mapping from solutions to scores optimize : compute a feasible solution of maximum score
physical and virtual/numerical models
simulators: imperative "how"

models

$\min \sum_{k=1}^{K} \sum_{j=1}^{n} d_{j k}$
s.t. $d_{j k} \geq \sum_{i=1}^{p}\left(m_{j}^{i}-y_{k}^{i}\right)^{2}-\bar{d}_{j k}\left(1-x_{j k}\right) \quad \forall j, k$
$\sum_{k=1}^{K} x_{j k}=1 \quad \forall j$

$$
x_{j k} \in\{0,1\}, y_{k}^{i} \in \mathbb{R}, d_{j k} \geq 0
$$

conceptual models formulation: declarative "what"

models

created by experts maybe reinforced automatically from data (machine learning)

accuracy \& approximation

Decision Making

Mathematical Optimization

solve a model not a problem

Approximate minimization

- imprecise (truncated) and uncertain (forecast) data
- approximate dynamics and simplified (soften) constraints
- conceptual objective

solve a model?

x

- solution may be infeasible or feasible within a tolerance gap
- solution may be sub-optimal or optimal within a tolerance gap
- solution may not be provably optimal, neither globally nor locally
- theoretic $=$ practical optimality guarantees: high complexity, slow convergence, limited time

optimize

Model describes the system behavior
Simulation evaluates behavior and score for one given input decision
Optimization search the input decision leading to the highest score different problems, different needs \longrightarrow many algorithms

```
operational research
```

different classes of algorithms:

- local/global, exact/heuristic
- deterministic/stochastic
- generic/specific

2 main principles:

- generate \& test
- divide \& conquer

generate \& test: principle

black-box or numerical methods:

1. select a candidate decision
2. simulate/evaluate feasibility and score
3. stop or iterate

which candidates to evaluate?
search: partial, exhaustive, exhaustive but implicit
choice: random/probabilistic or directed by distance, score, highest-order information (e.g: derivative of the objective function)

generate \& test: algorithms

examples:

- local search: move to a neighbour candidate, the best one or in an improving direction
- may converge to a global optimum, e.g.: gradient descent in convex optimization, simplex algorithm in linear programming
- metaheuristics (evolutionary, swarm): combine candidates, use collective memory

divide \& conquer: principle

divide-and-conquer:

1. separate the search space (and refine the model)
2. estimate feasibility and best score in a simpler relaxed model
3. backtrack if not better, record if full solution, or iterate
relaxation/bounding (the maximal score):

- certificate of optimality: zero-gap between best upper nound (UB) estimated from the relaxations and best lower bound (LB) computed on full solutions
- rely on tight but simple relaxations

divide \& conquer: algoithms

examples:

- greedy heuristic: no backtrack
- graph algorithms, dynamic programming
- backtracking methods in logic/constraint programming
- branch-and-bound in combinatorial optimization

one person's solution should not become another person's problem

mathematical optimization

mathematical program

$\min f(x): g(x) \leq 0, x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}$

$f: \mathbb{R}^{n} \mapsto \mathbb{R}$ objective
$g: \mathbb{R}^{n} \times \mathbb{R}^{m} \mapsto \mathbb{R}^{m}$ constraints
$x \in \mathbb{R}^{n}$ variables / solution

Pipe Sizing

my first MP

Choose the diameter of two water distribution pipes
to maximize the total rate of flow, within a budget of 180 euros, given that:

- 1st pipe: maximum diameter $=40 \mathrm{~cm}$, cost=3 euros $/ \mathrm{cm}$, avg rate $=3 \mathrm{u} / \mathrm{cm}$
- 2nd pipe: maximum diameter $=60 \mathrm{~cm}$, cost=2 euros $/ \mathrm{cm}$, avg rate $=5 \mathrm{u} / \mathrm{cm}$
variables: diameters for the pipes (in cm) constraints: bounds and budget objective: maximize flow rate

$$
\begin{aligned}
& \max 3 x_{1}+5 x_{2}: \\
& 0 \leq x_{1} \leq 40,0 \leq x_{2} \leq 60 \\
& 3 x_{1}+2 x_{2} \leq 180
\end{aligned}
$$

my first MP

$\max 3 x_{1}+5 x_{2}$:
$0 \leq x_{1} \leq 40,0 \leq x_{2} \leq 60$ $3 x_{1}+2 x_{2} \leq 180$
variables: diameters for the pipes (in cm) constraints: bounds and budget objective: max flow rate

linear case: graphical solution

- constraints define half-spaces in \mathbb{R}^{2}
- intersection = poyhedron = feasible solutions
- solutions of cost p : point in line $3 x_{1}+5 x_{2}=p$
- optimal solution: corner on the highest line
$-x=(20,60) \operatorname{cost} p=3 * 20+5 * 60=360$

mathematical program

$\min f(x): g(x) \leq 0, x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}$

well-solved classes:

$$
\begin{array}{rll}
f, g \text { linear } p=0 & \text { linear programming } \\
f \text { convex, } g \equiv 0, p=0 & \text { unconstrained optimization } \\
f, g \text { smooth convex } p=0 & \text { convex programming } \\
f, g \text { linear } p>1 & \text { mixed integer linear programming }
\end{array}
$$

Mixed Integer Linear Program

 covers discrete decisions: off/on status $x \in\{0,1\}$, operation level $l \in\{0,1, \ldots, N\}$ covers logical relations: $l \leq N(1-x)$ level is 0 if status is on: $x=1 \Longrightarrow l=0$ covers nonlinear relations: $l=\sum_{i=0}^{N} i x_{i}, y=\sum_{i=0}^{N} f_{i} x_{i}, 1=\sum_{i=0}^{N} x_{i}, x_{i} \in\{0,1\} \forall i \in\{0, \ldots, N\}$$$
y=f(l) \text { a discrete function }
$$

setup

piecewise linear

Groundwater abstraction (identical pumps)

Choose places to install pumps within a finite set \boldsymbol{J} of candidates and minimize the global cost, given:

- installation cost c_{j} and average flow rate q_{j} of a pump at place $j \in J$
- limited total abstraction rate: lower \underline{Q} and upper \bar{Q} limits
- at most 3 pumps installed, no 2 pumps on places a and $b \in J$ variables: $x_{j} \in\{0,1\}$ number of pumps installed at $j \in J$

$$
\begin{aligned}
& \min \sum c_{j} x_{j}: \\
& \underline{Q} \leq \sum q_{j} x_{j} \leq \bar{Q}, \sum x_{j} \leq 3 \\
& x_{a}+x_{b} \leq 1, x \in\{0,1\}^{J}
\end{aligned}
$$

Groundwater abstraction (distinct available pumps)

Assign available pumps taken from a finite set K :

- installation cost c_{k} and flow rate q_{k} now depends on pump $k \in K$
- limited abstraction \underline{Q}, \bar{Q}

$$
\begin{aligned}
& \min \sum_{k} \sum_{j} c_{k} x_{j k}: \\
& \underline{Q} \leq \sum_{k} \sum_{j} q_{k} x_{j k} \leq \bar{Q} \\
& \sum_{j} x_{j k} \leq 1 \quad \forall k \in K \\
& \sum_{k} x_{j k} \leq 1 \quad \forall j \in J \\
& x_{j k} \in\{0,1\} \quad \forall j \in J, k \in K
\end{aligned}
$$

variables: $x_{j k}=1$ lif pump $k \in K$ installed at place $j \in J$

MILP algorithms

- based on the LP relaxation
cutting-plane algorithm - evaluate, refine, iterate branch-and-bound - separate (on discrete variables), estimate, backtrack/iterate branch-and-cut - refine then estimate

declarative

performance

equations, not algorithms

versatile covers logic \& nonlinear

optimality
 primal-dual bounds
 MLP perks

flexible
general-purpose format \& solvers

declarative

performance

*still NP-hard: scale to some extent
sophisticated solvers (or consider LP)
equations, not algorithms
*good model ?

versatile

 covers logic \& nonlinear*approximation
(or consider MINLP)

large-scale decomposition methods

*algorithmic challenge

