
Mathematical optimization:
introduction and application to

water management

Sophie Demassey
https://sofdem.github.io/ 1

UCA - Master Hydroprotech - 2024

- collect, treat, distribute, value water as a commodity

water management ?
ex: design and operate wastewater networks under normal or extreme conditions

- mobilize water in processes as a resource with limited availability
ex: withdraw water for cooling or cleaning while preserving water source quality

- preserve a biotope, or deal with a natural hazard involving water
ex: adapt landscape to flood resilience

2

StrategicTacticalOperational

decision & management

time

accuracy

effective process system design long-term planning

prospective: data and scenariosoperational research: models and algorithms 3

this class

- overview of prescriptive tools in decision support

- focus on mathematical optimization and discrete decision

- model and solve mathematical programs

- selected applications in water management

4

prescriptive tools
in decision support

5

donnée brute

connaissance

information

donnée numérique

décision

prédiction

datawarehouse
visualisation

datamining

machine learning

optimization

decision support

in the 2000s:
business analytics,
big data

in the 2010s:
AI, deep learning

from WWII:
mathematical programming

6

data

Decision Making identify possible alternatives, attach a quantitative score,
 search an alternative with the highest score

Optimization

decide = optimize

model : describe the feasible solutions
objective: a mapping from solutions to scores
optimize : compute a feasible solution of maximum score

7

physical and virtual/numerical models

min
K

∑
k=1

n

∑
j=1

djk

s . t . djk ≥
p

∑
i=1

(mi
j − yi

k)2 − djk(1 − xjk) ∀j, k

K

∑
k=1

xjk = 1 ∀j

xjk ∈ {0,1}, yi
k ∈ ℝ, djk ≥ 0

conceptual models

modelssimulators: imperative "how"

formulation: declarative "what"

8

min
K

∑
k=1

n

∑
j=1

djk

s . t . djk ≥
p

∑
i=1

(mi
j − yi

k)2 − djk(1 − xjk) ∀j, k

K

∑
k=1

xjk = 1 ∀j

xjk ∈ {0,1}, yi
k ∈ ℝ, djk ≥ 0

models

(machine learning)

created by experts
maybe reinforced

 automatically from data

9

Decision Making Mathematical Optimization

concrete problem

practical decision

abstract model

(optimal) solution
solve

min
x∈ℝn

f(x) : gi(x) = 0 ∀i = 1,...,m

accuracy & approximation

solving, optimizing: find a solution to a model not to a problem10

≠

- imprecise (truncated) and uncertain (forecast) data
- approximate dynamics and simplified (soften) constraints
- conceptual objective

 ‘solve’
solve a model not a problem

solve a model ?

- solution may be infeasible or feasible within a tolerance gap
- solution may be sub-optimal or optimal within a tolerance gap
- solution may not be provably optimal, neither globally nor locally
- theoretic ≠ practical optimality guarantees: high complexity, slow convergence, limited time

11

Model describes the system behavior

Optimization

optimize

12

Simulation evaluates behavior and score for one given input decision

search the input decision leading to the highest score

di"erent classes of algorithms:
- local/global, exact/heuristic
- deterministic/stochastic
- generic/specific

2 main principles:
- generate & test
- divide & conquer

different problems, different needs many algorithms operational
research

generate & test: principle

black-box or numerical methods:
1. select a candidate decision
2. simulate/evaluate feasibility and score
3. stop or iterate

which candidates to evaluate ?
search: partial, exhaustive, exhaustive but implicit
choice: random/probabilistic or directed by distance, score, highest-order information (e.g:
derivative of the objective function)

13

generate & test: algorithms

- local search: move to a neighbour candidate, the best one or in an improving direction
- may converge to a global optimum, e.g.: gradient descent in convex optimization, simplex

algorithm in linear programming
- metaheuristics (evolutionary, swarm): combine candidates, use collective memory

examples:

14

gradient
descent

ant
colony

genetic
algorithm

divide & conquer: principle
divide-and-conquer:
1. separate the search space (and refine the model)
2. estimate feasibility and best score in a simpler relaxed model
3. backtrack if not better, record if full solution, or iterate

relaxation/bounding (the maximal score):

- certificate of optimality: zero-gap between best upper bound (UB) estimated from the
relaxations and best lower bound (LB) computed on full solutions

- rely on tight but simple relaxations

X

X
X

15

divide & conquer: algorithms

- greedy heuristic: no backtrack
- graph algorithms, dynamic programming
- backtracking methods in logic/constraint programming
- branch-and-bound in combinatorial optimization

examples:

X

X
X

16

17

one person’s solution
should not become

another person’s problem

(to keep in mind when modeling)

mathematical
optimization

18

mathematical program

 min f(x) : g(x) ≤ 0, x ∈ ℤp × ℝn−p

 objective
 constraints

 variables / solution

f : ℝn ↦ ℝ
g : ℝn × ℝm ↦ ℝm

x ∈ ℝn

19

my first MP

20

Choose the diameter of two water distribution pipes
to maximize the total rate of flow, within a budget of 180 euros, given that:
- 1st pipe: maximum diameter = 40cm, cost=3 euros/cm, avg rate=3u/cm
- 2nd pipe: maximum diameter = 60cm, cost=2 euros/cm, avg rate=5u/cm

Pipe Sizing

variables: diameters for the pipes (in cm)
constraints: bounds and budget
objective: maximize flow rate

max 3x1 + 5x2 :
0 ≤ x1 ≤ 40, 0 ≤ x2 ≤ 60
3x1 + 2x2 ≤ 180

my first MP

21

variables: diameters for the pipes (in cm)
constraints: bounds and budget
objective: max flow rate

max 3x1 + 5x2 :
0 ≤ x1 ≤ 40, 0 ≤ x2 ≤ 60
3x1 + 2x2 ≤ 180

linear case: graphical solution
- constraints define half-spaces in
- intersection = poyhedron = feasible solutions

- solutions of cost : point in line

- optimal solution: corner on the highest line

- cost

ℝ2

p 3x1 + 5x2 = p

x = (20,60) p = 3 * 20 + 5 * 60 = 360

mathematical program

 min f(x) : g(x) ≤ 0, x ∈ ℤp × ℝn−p

 linear
 convex, ,
 smooth convex

 linear

f, g p = 0
f g ≡ 0 p = 0

f, g p = 0
f, g p > 1

linear programming
unconstrained optimization
convex programming
mixed integer linear programming

well-solved classes:

22

Mixed Integer Linear Program
covers discrete decisions: off/on status , operation level x ∈ {0,1} l ∈ {0,1,…, N}
covers logical relations: l ≤ N(1 − x) level is 0 if status is on: x = 1 ⟹ l = 0

covers nonlinear relations: l =
N

∑
i=0

ixi, y =
N

∑
i=0

fixi, 1 =
N

∑
i=0

xi, xi ∈ {0,1}∀i ∈ {0,…, N}

 a discrete function y = f(l)

discrete setup piecewise linear
23

my first MILP

24

Choose places to install pumps within a finite set of candidates
and minimize the global cost, given:

- installation cost and average flow rate of a pump at place

- limited total abstraction rate: lower and upper limits

- at most 3 pumps installed, no 2 pumps on places and

J

cj qj j ∈ J
Q Q

a b ∈ J

Groundwater abstraction (identical pumps)

variables: number of pumps installed at xj ∈ {0,1} j ∈ J

min ∑ cjxj :

Q ≤ ∑ qjxj ≤ Q, ∑ xj ≤ 3

xa + xb ≤ 1, x ∈ {0,1}J

variant MILP

25

Assign available pumps taken from a finite set :

- installation cost and flow rate now depends on pump

- limited abstraction

K
ck qk k ∈ K

Q, Q

Groundwater abstraction (distinct available pumps)

variables: if pump installed at place xjk = 1 k ∈ K j ∈ Jmin ∑
k

∑
j

ckxjk :

Q ≤ ∑
k

∑
j

qkxjk ≤ Q

xjk ∈ {0,1} ∀j ∈ J, k ∈ K

∑
j

xjk ≤ 1 ∀k ∈ K

∑
k

xjk ≤ 1 ∀j ∈ J

MILP algorithms
branch-and-bound

- based on the LP relaxation

- evaluate, refine, iterate

- separate (on discrete variables), estimate, backtrack/iterate

- refine then estimate

cutting-plane algorithm

branch-and-cut

26

MILP perks

27

declarative
equations, not algorithmsperformance

sophisticated solvers

flexible
general-purpose format & solvers

versatile
covers logic & nonlinear

large-scale
decomposition methods

optimality
primal-dual bounds

MILP perks*

28

declarative
equations, not algorithmsperformance

sophisticated solvers

flexible
general-purpose format & solvers

versatile
covers logic & nonlinear

large-scale
decomposition methods

optimality
primal-dual bounds

*still NP-hard: scale to some extent
(or consider LP)

*approximation
(or consider MINLP)

*good model ?

*generic ≠ best
*algorithmic challenge

