

45

a commodity, a resource, an environment

drinking water	
wastewater	
rain, ice, surface water, ground water	
fresh, brackish, saline water	
irrigation water	
source of hydropower (river, tide, wave)	
vector of pumped-storage hydroelectricity	
steam to generate heat and energy	
water for cooling or cleaning	
water for processing (fracking, diluting, drilling)	
storms, floods, droughts, mudflows, tsunamis	
subject to thermal, chemical pollution	
related to climate change, climate variability	
wetlands, rain forests, oceans, coasts and rivers	44

to process

extract, supply,

treat, produce, irrigate, desalinate, purify, drain, heat, blend, store, pump, flow, preserve, measure, prevent, control in small/large systems

water is

urban networks
sewers
desalination plant
farms
power systems
hydropower plant
thermal plants
industries
municipalities
pumps, turbines
aquifers
drainage basins
ecosystems
world

water optimization

select elements to operate assign operation level allocate resources schedule operations position elements

design the system

select elements to dimension, maintain assign dimension, equipment plan resources and times

often discrete decisions nonlinear physical dynamics minimize an economic/social/ecological cost

urban water networks

groundwater abstraction

hydroelectricity production

46

study cases

sustainable abstraction

place pumps and plan pumping to prevent aquifer depletion (then land subsidence or seawater intrusion) and quality degradation (temperature, salinity) while maximizing the abstraction value

strong uncertainties (aquifer recharge rate), approximate dynamics(quality) and sustainability models

[Hassan et al. Mapping the optimization of groundwater abstraction research: A bibliometric review in the context of South Asian region. Heliyon 2023]

select the size of the pipes in a gravity-fed network to satisfy the demand at each delivery node while minimizing the installation costs

finite catalog of pipes:

pipe sizing

pipe sizing

pipe sizing

assign a size k to each pipe $a: x_{ak} = 1$ (otherwise $x_{ak} = 0$) hydraulic equilibrium between flows q and heads h, v in the selected network

convex MINLP reformulation

$\min_{x,q,h}\sum_{a}\sum_{k}c_{ak}x_{ak}$	
$s.t.x_{ak} = 0 \implies q_{ak} = v_{ak} = 0$	$\forall a \in A, k \in K$
$\sum_{k} x_{ak} = 1, h_i - h_j = \sum_{k} v_{ak}$	$\forall a = (i, j) \in \mathbb{Z}$
$\sum_{ak} E_{as} q_{ak} = D_s$	$\forall s \in S$
$\sum_{ak} \left(f_{ak}(q_{ak}) + f_{ak}^*(v_{ak}) \right) + H_R^\top q_R + D_S^\top h_S \le 0$	(<i>SD</i>)

[Demassey. <u>Strong duality reformulation for bilevel optimization over nonline</u> flow networks. 2023]

pump scheduling (load shifting in pressurized networks)

schedule pumps and valves in a pressurized network on a time horizon to satisfy the varying demand at each delivery node and the capacity of the water tanks while minimizing the electricity bill

(2) 100 (2) 100 50 0		
100 - 50 - 0		
100 - 50 - 0	electricity cost in 6.040m	
0.05		

pump scheduling

activate pump/valve a at time t: $x_{at} = 1$ (otherwise $x_{at} = 0$) hydraulic equilibrium between flows q and heads h, v in the active network limit the water tank level H

$\min \sum_{a} \sum_{t} c_{at}^{0} x_{at} + c_{at}^{1} q_{at}$	
$s.t.(q_{At},h_{St}) \in NAP(D_{St},H_{Rt},\phi_{A(x_t)})$	$\forall t \in T$
$x_{at} = 0 \implies q_{at} = 0$	$\forall a \in A, t \in T$
$\longrightarrow H_{R(t+1)} = H_{Rt} + s_R^\top q_{Rt}$	$\forall t \in T$
$\underline{H}_{Rt} \le H_{Rt} \le \overline{H}_{Rt}$	$\forall t \in T.$

additional complexity: temporal inter-dependency

[Demassey <u>Strong duality reformulation for bilevel optimization over nonline</u> flow networks. 2023]

water network optimization (drinking, waste, irrigation)

decisions

dimension renovation extension sectorization scheduling operations scheduling maintenance place equipments and controllers calibrate hydraulic models

concerns

demand: standard, worst-case, emergency network topology energy consumption leakage, over-pressure flow conservation pressure-flow relation chlorine consumption water quality, treatment storage capacity resilience to failures or storms sewer overflow

[Bello, et al. Solving Management Problems in Water Distribution Networks: A Survey of Approaches and Mathematical Models. Water 2019] [Mala-Jetmarova, Sultanova, Savic. Lost in Optimisation of Water Distribution Systems? A Literature Review of System Design. Water 2018]

hydro unit commitment

schedule pumps and turbine to ensure flow conservation and maintain reservoir level in their limits w.r.t strategic constraints (load balance, ramp, irrigation) while maximizing the power production value

(lagrangian) subproblem of day-to-day unit commitment encompassing national power systems

hydro unit commitment

flow q_{it} , volume v_{it} , power production/consumption p_{it} in plant i at time t nonlinear flow-power relation ϕ (turbine), disjunctive flow domains volume conservation and limits in reservoirs

[Taktak & d'Ambrosio. An overview on mathematical programming approaches for the deterministic unit commitment problem in hydro valleys. Energy Sys 2017]

- huge diversity of water systems & processes
- management involves decision involves optimization, e.g. maximize sustainability
- mathematical optimization as a low-tech solution (except computation and data acquisition) to get as much out of existing investments
- uncertain forecasts, intricated systems, nonlinear dynamics, fuzzy objectives: trade-off between accurate models and efficient algorithms

59

- modelling sustainability accurately

- from simulation (what if) to optimization (what should)
- short/long-term model coupling: time-scale reconciliation

D. Bertsimas & J. Tsitsiklis 1997

Introduction to LINEAR

OPTIMIZATION

Dimitris Bertsimas John N. Tsitsiklis

37

