
M2 ORO: Advanced Integer Programming
Solution Final Exam – 1st session

november 16, 2009

duration: 2 hours.

documents: lecture notes are authorized. No book, no book copy.

grades: 4 problems of 5 points each = 20 points.

Notations:
Z, Z+, Z∗+ the sets of integer, non-negative integer, and positive integer numbers
R, R+, R∗+ the sets of real, non-negative real, and positive real numbers
�a�, ∀a ∈ R the integer round-up (ceiling) of a: min{b ∈ Z | a � b}
�a�, ∀a ∈ R the integer round-down (floor) of a: max{b ∈ Z | a � b}

1 Multi-Item Lot-Sizing Problem (MLS)
Problem 1 The Multi-Item Lot-Sizing Problem (MLS).
Given demands d

k
t for items k = 1, . . . ,K over a time horizon t = 1, . . . , T . All items must be produced on a

single machine. The machine has to produce exactly one item type in each period. Furthermore, the machine has
no capacity: it can produce any number of items in a given period. Given unit production costs pkt , unit storage
costs hk

t and set-up costs fkt for each item k in each period t, we wish to find a minimum cost production plan.

Question 1 (5 points).

Q1.1. model this problem (MLS) as a Mixed Integer Linear Program;

Q1.2. suppose that we can compute all the feasible production plans for each item k individually, i.e.
all the feasible solutions of the Uncapacitated Lot-Sizing Problem induced for each item k. Let Xk

denote this set of feasible solutions and n
k the cardinality of Xk. Show that (MLS) can be seen

as an instance of the Set-Partitioning Problem and derive a second model for (MLS) as a Binary
Integer Linear Program with

�K
k=1 n

k binary variables.
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k
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k
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x
k
t � M

k
y
k
t ∀t = 1, . . . , T ,

s
k
0 = 0 }

is the set of feasible solutions of an Uncapacitated Lot-Sizing Problem.

2. (MLS) is an instance of set-partitioning where one must select exactly one feasible production
plan for each item type (i.e. one element of Xk for each k = 1, . . . ,K) such that exactly one item
is produced at each time t = 1, . . . , T . Let P

k,1, . . . ,Pk,nk denote the elements of X
k, i.e: each

P
k,i corresponds to a vector (xk,i, sk,i,yk,i) satisfying the constraints of X

k. Let a
k,i
t = y

k,i
t ,

c
k,i =

�
tp

k
t x

k,i
t + h

k
t s

k,i
t + f

k
ty

k,i
t . Then consider a decision variable λ

k,i = 1 if and only if the
production plan P

k,i is selected. Then (MLS) can be reformulated as the following set-partitioning
problem:

(MLS
�) : z = min

�

k

nk�

i=1

c
k,i

λ
k,i

s.t.
�

k

nk�

i=1

a
k,i
t λ

k,i = 1 ∀t = 1, . . . , T ,

nk�

i=1

λ
k,i = 1 ∀k = 1, . . . ,K,

λ
k,i ∈ {0, 1} ∀k = 1, . . . ,K, ∀i = 1, . . . ,nk,

2 Traveling Salesman Problem with Time Windows (TSP-TW)
Problem 2 The Traveling Salesman Problem with Time Windows (TSP-TW).
The TSPTW is defined on a network G = (N ∪ {0},A) where N = {1, . . . ,n} is the set of nodes to visit, 0 is the
depot, and A is the set of arcs connecting each pairs of distinct nodes. To each arc (i, j) ∈ A, are associated a
cost cij � 0 and a travel duration tij > 0. To each node i ∈ N ∪ {0}, is associated a time window [ai,bi], with
0 � ai � bi. A tour is a path starting at the depot at time 0, visiting all nodes in N exactly once, then returning
to the depot. Given a tour, we can associate an arrival time to each node i ∈ N ∪ {0} such that: if arc (0, i)
belongs to the tour then the arrival time at i is greater or equal to the travel duration t0i; and if arc (i, j), i �= 0,
belongs to the tour then the arrival time at j is greater or equal to the arrival time at i plus the travel duration tij.
If the arrival time at each node i ∈ N ∪ {0} belongs to the time interval [ai,bi], then the tour and the associated
arrival time vector form a feasible tour. The problem is to find the feasible tour of minimum cost.

Consider a feasible tour encoded as:
– an incidence vector x ∈ {0, 1}A defined by xij = 1 if arc (i, j) ∈ A belongs to the tour, xij = 0 otherwise,
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– and an arrival time vector w ∈ Zn+1
+ , where wi denotes the arrival time of the tour at node i ∈ N∪ {0}.

Question 2 (5 points).

Q2.1. linearize the following condition: x is a path in G starting from node 0, visiting nodes in N, then
finishing at node 0.

Q2.2. linearize the following condition: each node in N appears exactly once in x

Q2.3. linearize the following condition: xij = 1 =⇒ wj � wi + tij, ∀(i, j) ∈ A, i �= 0.

Q2.4. show that any tour (x,w) satisfying this last condition Q2.3 cannot contain any proper subtour

Q2.5. model this problem (TSP-TW) as an Integer Linear Program.

1. at each node i, the number of entering arcs is equal to the number of leaving arcs:
�

j|(i,j)∈A

xij =
�

j|(i,j)∈A

xji, ∀i ∈ N∪ {0}.

Furthermore, for i = 1: �

j|(0,j)∈A

x0j = 1.

2. this number of arcs is equal to 1 for each node i:
�

j|(i,j)∈A

xij = 1, ∀i ∈ N∪ {0}

3. for each feasible tour: wj −wi � lij = aj − bi then the condition can be linearized as:

wj −wi � (tij − lij)xij + lij, ∀(i, j) ∈ A, i �= 0.

For i = 0, the condition becomes

wj � (t0j − aj)x0j + aj, ∀j ∈ N,

4. Let (x,w) satisfying this last set of constraints and assume that x contains subcycles. Consider
a subcycle (i1, i2, . . . , ik, ik+1 = i1), k � 2 which does not contain the depot 0, i.e. ij ∈ N, ∀j =
1, . . . ,k. By assumption, we have that wij+1 −wij � tijij+1 , ∀j = 1, . . . ,k. Hence 0 = wik+1 −wi1 =
�k+1

j=1 tijij+1 > 0 which is absurd.

(TSP− TW) : z = min
�

(i,j)∈A

cijxij

s.t.
�

j|(i,j)∈A

xij = 1 ∀i ∈ N∪ {0},

�

j|(j,i)∈A

xji = 1 ∀i ∈ N∪ {0},

wj −wi � (tij − lij)xij + lij ∀(i, j) ∈ A, i �= 0,
wj � (t0j − aj)x0j + aj ∀j ∈ N,
ai � wi � bi ∀i ∈ N∪ {0},
xij ∈ {0, 1} ∀(i, j) ∈ A,
wi ∈ R+ ∀i ∈ N∪ {0}.
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3 Change-Making Problem
Problem 3 The Change Making Problem (CMP).
A cashier has to assemble a given change c ∈ Z∗+ using the less number of coins of specified values wj ∈ Z∗+,
j = 1, . . . ,n. For each value, an unlimited number of coins is available. We assume, without loss of generality,
that the coin values are sorted by decreasing values w1 > w2 > · · · > wn..

Question 3 (5 points).

Q3.1. model this problem as an Integer Linear Program (CMP).

Q3.2. show that � c
w1

� is a lower bound of (CMP).

Q3.3. find an optimum solution of the LP-relaxation (P̄) of (CMP).

Q3.4. if c
w1

is integer, then find an optimum solution of (CMP); otherwise, show that x1 � � c
w1

� defines
a cutting-plane for (CMP), where x1 denotes the number of coins of values w1.

Q3.5. let (P̄ �) denote the Linear Program obtained by augmenting (P̄) with the cutting-plane of the
previous question; show that (P̄ �) is a relaxation of (CMP).

Q3.6. find an optimum solution of (P̄ �) with � c
w1

� coins of values w1 and a fractional number of coins
of value w2 to determine, and derive an improved lower bound for (CMP).

1.

(CMP) : z = min
n�

j=1

xj s.t.
n�

j=1

wjxj = c, xj ∈ Z+ ∀j = 1, . . . ,n }.

2. Let x be a feasible solution of (CMP) then
�n

j=1 xj � �n
j=1

wj

w1
xj = c

w1
since wj

w1
� 1 for all

j = 1, . . . ,n. As
�n

j=1 xj is integer then
�n

j=1 xj � � c
w1

�.

3. x̄ = ( c
w1

, 0, . . . , 0) is an optimum solution of (P̄) since it is feasible and, as above, any fractional
solution of (P̄) is of greatest cost

�n
j=1 xj � c

w1
.

4. If c
w1

is integer then x̄ is feasible and then optimum for (CMP). Otherwise, x̄ does not satisfy
constraint x1 � � c

w1
�. Furthermore, this constraint is a valid inequality for (CMP) since for all

feasible solution x of (CMP) we have that x1 is integer and x1 = c
w1

−
�n

j=1
wj

w1
xj � c

w1
.

5. The set of feasible solutions of (CMP) is included in the set of feasible solutions of (P̄ �) according
to the previous question, and the objective function is the same in the two problems.

6. Let c̄ = c− � c
w1

�w1, then x̄
� = (� c

w1
�, c̄

w2
, 0, . . . , 0) is feasible for (P̄ �) and optimum since, for all

feasible solution x of (P̄ �):
n�

j=1

xj � x1 +
n�

j=2

wj

w2
xj = x1 +

c−w1x1
w2

=
c

w2
−

w1 −w2
w2

x1

� c

w2
−

w1 −w2
w2

� c

w1
� = � c

w1
�+ c̄

w2
=

n�

j=1

x̄
�
j.

As a consequence � c
w1

�+ � c̄
w2

� is a lower bound for (CMP) which is as least as good as the previ-
ous bound � c

w1
� since c̄ > 0 and then:

� c

w1
�+ � c̄

w2
� = � c

w1
�+ � c̄

w2
�− 1 � � c

w1
�.
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4 Capacitated Facility Location Problem (CFL)
Problem 4 The Capacitated Facility Location Problem (CFL).
Given a set of potential depots J = {1, . . . ,n} and a set of clients I = {1, . . . ,m}, there is a number of items, all of
the same type, to serve from the depots to the clients. Each depot j ∈ J has a finite capacity bj (the number of items
available at the depot) and each client i ∈ I has a finite requirement ai (the minimum number of items ordered by
the client). There is a fixed cost fj associated with the use of depot j ∈ J and an unit transportation cost cij that is
paid for each item served to client i ∈ I from depot j ∈ J. All data are positive integers. The problem is to decide
which depots to open and which amount of items to serve to each client from each open depot, so as to minimize
the sum of the fixed and transportation costs.

Question 4 (5 points).

Q4.1. model this problem as an Integer Linear Program (CFL);

Q4.2. formulate the lagrangian relaxation of (CFL) when dualizing the client requirement constraints;

Q4.3. show that each lagrangian subproblem can be decomposed into independent subproblems;

Q4.4. assume that the requirements for all clients are equal to 1; propose an algorithm to solve or to
approximate this lagrangian relaxation.

1.

(CFL) : z = min
�

i∈I

�

j∈J

cijxij +
�

j∈J

fjyj

s.t.
�

j∈J

xij � ai ∀i ∈ I,

�

i∈I

xij � bjyj ∀j ∈ J,

xij ∈ Z+ ∀i ∈ I, ∀j ∈ J,
yj ∈ {0, 1} ∀j ∈ J.

2. For each multiplier λ ∈ RI
+:

(Lλ) : zλ = min
�

i∈I

�

j∈J

(cij − λi)xij +
�

j∈J

fjyj +
�

i∈I

λiai

s.t.
�

i∈I

xij � bjyj ∀j ∈ J,

xij ∈ Z+ ∀i ∈ I, ∀j ∈ J,
yj ∈ {0, 1} ∀j ∈ J.

The lagrangian dual problem is D = max{zλ |λ ∈ RI
+ }.

3. (Lλ) can be decomposed into n problems, one for each depot: zλ =
�

i∈Iλiai +
�

j∈Ju
j
λ where

u
j
λ is defined for all j ∈ J by:

(Ljλ) : u
j
λ = min

�

i∈I

(cij − λi)xij + fjyj

s.t.
�

i∈I

xij � bjyj

xij ∈ Z+ ∀i ∈ I,
yj ∈ {0, 1}.
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4. Consider a subproblem (Ljλ). If depot j is not open then yj = 0 and xij = 0 ∀i ∈ I is the unique
feasible solution and its cost is 0. Conversely, if depot j is open then it should serve each profitable
client in the limit of its capacity: the subproblem is an Integer Knapsack Problem. When the
requirements are all equal to 1 then the subproblem becomes a 0 − 1 Knapsack Problem where all
weights are equal to 1. An optimum solution consists in sorting the clients by increasing order of
cost cij − λi then selecting the first at most bj clients having negative costs cij − λi < 0. Let Ijλ ⊆ I

be the set of selected clients. The optimum value of (Ljλ) is then u
j
λ = min{0,

�
i∈Ijλ

(cij − λi) + fj}

and it can be computed in O(m) time. As a consequence, each subproblem (Lλ) can be solved
at optimality and its optimum value zλ =

�
i∈Iλiai +

�
j∈Ju

j
λ can be computed in O(mn) time.

Solving the dual lagrangian problem requires a priori to solve iteratively subproblems (Lλ) for
different values of λ ∈ R. The sequence of multipliers can be chosen according to a cutting-plane
algorithm or a subgradient algorithm.
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