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introduction

decision is optimization

select the best of all possible alternatives – the solutions –
regarding a quantitative criterion – the objective.

time : min travel duration, min lateness schedule

space : min travel distance, min wasted space layout

money : min cost design, max profit operation

goods : max production, min energy consumption

choice : max satisfaction

quantity : min potential energy (equilibrium)
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decision for climate

optimize to help decarbonize{
better processes : minimize consumption, maximize utility
new technologies : makes decision (problems) harder

Ex : PV, heat pumps, insulating materials for residential heat : how to choose, size, arrange,
plan, manage them? which criteria : heating needs, budget, efficiency, emissions, lifespan?

hard decision making requires decision aid

• strategic (design/long-term) or operational (control/short-term)

• large-scale (e.g. European electric system) or small-scale (e.g. water heater)

• imperfect knowledge : complex dynamics, uncertain forecasts

• CPU intensive
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decision support

Operations Research (1940)

IA/deep learning (2010)

Business Analytics (2000)
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models
Decision feasibility and value are observed through a model of the system/process

formalized from the dynamics knowledge or learned from solution samples
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optimization models

A mathematical optimization model is

an abstract representation of the problem solutions,
not explicitly as a list, a dataset, but implicitly as

relationships between unknowns functions over variables

min { f(x) : gi(x) ≤ 0 ∀i ∈ {1, . . . ,m}, x ∈ Rn }

with f : Rn → R in the objective : the function to minimize
and g : Rn → Rm in the constraints : the relations to satisfy.

7



accuracy & approximation

decision making problem solving

concrete problem −→ abstract model solve−→ model solution −→ practical decision
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problem solving : theory vs practice

solve a model 6= solve a problem

• uncertain (forecast) and imprecise (truncated) data

• approximate (simplified) dynamics/constraints

• conceptual objective

solve a modelmin f(x) : g(x) ≤ 0?

• feasible within a tolerance gap : g(x) ≤ ϵ

• optimal within a tolerance gap : f(x) ≤min f + ϵ

• optimal local vs global

• theoretic vs practical guarantees : high complexity, slow
convergence, limited time

9

decision prescriptive tools

• mathematical optimization : algorithms to compute a solution :

x∗ ∈ argmin { f(x) : g(x) ≤ 0, x ∈ Rn }, f, gi : Rn → R

The solution can be exact or approximate : f(x̃) ≈min f or g(x̃) ≤ ϵ

• simulation : evaluate a given decision x w.r.t. a model of the system/process, checking
feasibility g(x) ≤ 0 and computing value f(x)

• simulation-optimization or black-box optimization : iterative simulation of decisions
x1, x2, . . . , xN ∈ Rn often searched heuristically

x̃ ∈ argmin { f(xk) : g(xk) ≤ 0, k ∈ {1, . . . , N}}

• machine learning : learn a numerical approximate model from samples of the
system/process (f̃ , g̃) ≈ (f, g) or, directly, of the best decisionsM(f, g) ≈ x∗
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solving methods

analytical methods come from a provable theory, e.g. :
• min x2 − 4x+ 3, x ∈ [0, 5] (Fermat, derivative)
• shortest path in a graph (Dijkstra, Bellman)

numerical methods evaluate f(xk) iteratively at trial points (xk)

1st- or 2nd-order methods if driven by f ′(xk) or f ′′(xk) (simplex, gradient)
derivative-free otherwise (metaheuristics, branch-and-bound)

guess xk f(xk) stop?
k=0

compute/simulate

direction/step?
k++
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different algorithms for different classes of models

• with or without constraints

• single or multiple objectives

• fixed or uncertain data

• analytic or logic or graphic models

• linear or convex or nonconvex functions

• smooth or nonsmooth functions

• continuous or discrete decisions
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applications of mathematical optimization

• operational research : operation, design and plan (routing, scheduling, packing, cutting,
rostering, allocating) of physical/economical systems in logistics, energy, finance, etc.

• prospective : long-term vision on large systems

• optimal control : command u(t) to optimize trajectory x(t) s.t. x′(t) = g(x(t), u(t))

• machine learning : find a best model/data match (e.g. a linear fit)

• artificial intelligence : machines decide when they don’t dream of electric sheeps

• game theory : multiple players, conflicting goals, best respective strategies
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mathematical programming

programming = planning (military/industrial) operations

Definition : mathematical program

minimize f(x)

subject to g(x) ≥ 0

x ∈ Rn

maximize f(x)

subject to g(x) ≤ 0

x ∈ Rn

minimize or maximize under constraints ≤, ≥ or =, but never > or <

• x : the decision variables
• f : Rn → R : the objective function. Note : maximize f ≡ −minimize (−f)

• g : Rn → Rm : the constraints. Note : g(x) ≤ 0 ≡ −g(x) ≥ 0

solutions Rn

feasible solutions {X ∈ Rn : g(X) ≥ 0}
optimal solutions argmin{f(x) : g(x) ≥ 0, x ∈ Rn} 14

linear program

a mathematical programmin {f(x)|g(x) ≥ 0, x ∈ Rn} with linear/affine functions f, g :
f(x) = cTx, g(x) = Ax− b where c ∈ Rn, A ∈ Rm×n, b ∈ Rm.

Definition : linear program (LP)

min cTx

s.t. Ax ≥ b

x ∈ Rn

min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≥ bi, ∀i = 1, . . . ,m

xj ∈ R ∀j = 1, . . . , n
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linear program : an example

f(x) = cTx, g(x) = Ax− b with c ∈ Rn, A ∈ Rm×n, b ∈ Rm.

Example with n = 3 variables,m = 2 constraints

x =

x1

x2

x3

, c =

1

0

0

, A =

(
5 3 −2

1 1 1

)
, b =

(
4

−1

) min x1

s.t. 5x1 + 3x2 − 2x3 ≥ 4

x1 + x2 + x3 ≥ −1

x1, x2, x3 ∈ R

• (x1, x2, x3) is feasible iff it satisfies EVERY constraints

• x 7→ 5x2, (x, y) 7→ 3xy are not linear (but quadratic)
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how relevant is LP ? (course motivation)

• many applications :
format for practical decision problems,
approximation for convex problems,
basis for nonconvex/logic problems
(with discrete/integer variables)

• easy to solve :
polynomial-time algorithms,
efficient practical algorithms,
efficient off-the-shelf solvers,
nice properties (geometry, strong duality)
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ex 1 : nuclear waste management

A company eliminates nuclear wastes of 2 types A and B, by applying a sequence of 3
processes I, II and III in any order. The processes I, II, III, have limited availability,
respectively : 450h, 350h, and 200h per month. The unit processing times depend on the
process and waste type, as reported in the following table :

process I II III
waste A 1h 2h 1h
waste B 3h 1h 1h

The profit for the company is 4000 euros to eliminate one unit of waste A and 8000 euros
to eliminate one unit of waste B.

Objective : maximize the profit.
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how to model ?

1. decision variables : what a solution is made of?

2. constraints : what is a feasible solution? (may require additional variables)

3. objective : what is an optimal solution? (may require add variables/constraints)

4. check the units or convert

5. check LP format (linear, continuous, non-strict inequalities) or reformulate
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ex 1 : nuclear waste management – LP model

• decision variables?
• xA, xB the fraction of units of waste of type A or B to process each month

• constraints and objective?
• definition domain of the variables (nonnegative)
• limited availability (in h/month) for each process
• maximize revenue (in keuros)

max 4xA + 8xB

s.t. xA + 3xB ≤ 450

2xA + xB ≤ 350

xA + xB ≤ 200

xA, xB ≥ 0
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Note on modelling

linearly equivalent formulations :
max f −min(−f)

ax ≤ b −ax ≥ −b

ax = b ax ≥ b and ax ≤ b

ax ≤ b ax+ s = b and s ≥ 0

x ∈ R x = y − z, y ≥ 0, z ≥ 0
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linear program in standard form

Definition : LP in standard form
only equality constraints and nonnegative variables :

min cTx

s.t. Ax = b

x ≥ 0

min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj = bi, ∀i = 1, . . . ,m

xj ≥ 0 ∀j = 1, . . . , n

with c ∈ Rn, A ∈ Rm×n, b ∈ Rm
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reduction to standard form
Proposition : reduction
Every linear program

min{cTx|Ax ≥ b, x ∈ Rn}

can be transformed into an equivalent problem in standard form

min{dT y|Ey = f, y ∈ Rp
+}

min x1

s.t. 5x1 − 3x2 ≥ 4

x1 + x2 ≥ −1

x1, x2 ∈ R

min (x+
1 − x−

1 )

s.t. 5(x+
1 − x−

1 )− 3(x+
2 − x−

2 )− z1 = 4

(x+
1 − x−

1 ) + (x+
2 − x−

2 )− z2 = −1

x+
1 , x

−
1 , x

+
2 , x

−
2 , z1, z2 ≥ 0
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reduction to standard form (recipe)

replace by

negative variable x ≤ 0 x = −z, z ≥ 0

free variable y free y = y+ − y−, y+, y− ≥ 0

slack constraint Ax ≥ b Ax− s = b, s ≥ 0

slack constraint Ey ≤ f Ey + u = f , u ≥ 0

maximization max cx −min(−c)x

max cTx+ dT y

s.t. Ax ≥ b

Ey ≤ f

x ≤ 0, y free

min (−c)T (−z) + (−d)T (y+ − y−)

s.t. A(−z)− s = b

E(y+ − y−) + u = f

z, y+, y−, s, u ≥ 0
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Ex : nuclear waste management – LP standard form

max 4xA + 8xB

s.t. xA + 3xB ≤ 450

2xA + xB ≤ 350

xA + xB ≤ 200

xA, xB ≥ 0

−min − 4xA − 8xB

s.t. xA + 3xB + s1 = 450

2xA + xB + s2 = 350

xA + xB + s3 = 200

xA, xB , s1, s2, s3 ≥ 0
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ex 2 : petroleum distillation

The two crude petroleum problem [RALPHS]

A petroleum company distills crude imported from Kuwait (9000 barrels available at 20AC
each) and from Venezuela (6000 barrels available at 15AC each), to produce gasoline (2000
barrels), jet fuel (1500 barrels), and lubricant (500 barrels) in the following proportions :

gasoline jet fuel lubricant
Kuwait 0.3 0.4 0.2
Venezuela 0.4 0.2 0.3

(e.g. : producing 1 unit of gasoline requires 0.3 units of crude from Kuwait and 0.4 from Venezuela)

Objective : minimize the production cost.
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ex 2 : petroleum distillation – LP model

• decision variables?
• xK , xV the quantity (in thousands of barrels) to import from Kuwait or from Venezuela

• constraints and objective?
• availability for each crude, distillation balance for each product, production costs

min 20xK + 15xV

s.t. 0.3xK + 0.4xV ≥ 2

0.4xK + 0.2xV ≥ 1.5

0.2xK + 0.3xV ≥ 0.5

0 ≤ xK ≤ 9

0 ≤ xV ≤ 6
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Ex : petroleum distillation – LP standard form

min 20xK + 15xV

s.t. 0.3xK + 0.4xV ≥ 2

0.4xK + 0.2xV ≥ 1.5

0.2xK + 0.3xV ≥ 0.5

0 ≤ xK ≤ 9

0 ≤ xV ≤ 6

min 20xK + 15xV

s.t. 0.3xK + 0.4xV − sG = 2

0.4xK + 0.2xV − sJ = 1.5

0.2xK + 0.3xV − sL = 0.5

xK + sK = 9

xV + sV = 6

xk, xV , sG, sJ , sL, sK , sV ≥ 0
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how to solve my LP ?

• LPs are smooth convex optimization problems and many algorithms apply

• LP solvers (gurobi, cplex, glpk, mosek...) are software or libraries with
efficient implementations of dedicated algorithms (e.g. simplex, interior point)

• to solve an LP : call the solver with input A, b, c (no algorithm to implement)
• formats for input data (depending of the solver) :

• text format (lp),
• modelling langage (gams, ampl)
• library (pyomo,matlab),
• solver API (gurobipy)

29

Gurobi and the python API

gurobi + python = gurobipy

• Gurobi is a commercial solver, freely available for students and academics

• a trial version of gurobipy limited to small-size models is available from Google Colab

• code examples as Jupyter Notebook can be edited and executed :
https://www.gurobi.com/jupyter_models/
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linear algebra review and notation (1)

matrix A ∈ Rm×n with entry aij in row 1 ≤ i ≤ m, column 1 ≤ j ≤ n

transpose AT ∈ Rn×m with aTji = aij

(column) vector a ∈ Rn ≡ Rn×1

scalar product a, b ∈ Rn, 〈a, b〉 = aT b = bTa =
∑n

j=1 ajbj

matrix product A ∈ Rm×p, B ∈ Rp×n, C = AB ∈ Rm×n with cij =
∑p

k=1 aikbkj .
matrix product is associative (AB)C = A(BC) and (AB)T = BTAT
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linear algebra review and notation (2)

linear combination
∑p

i=1 λix
i ∈ Rn

of vectors x1, . . . , xp ∈ Rn with scalars λ1, . . . , λp ∈ R

linearly independence
∑p

i=1 λix
i = 0 ⇒ λ1 = · · · = λp = 0

vector-space span V = {
∑p

i=1 λix
i | λ1, . . . , λp ∈ R} ⊆ Rn

dimension dim(V ) = p if x1, . . . , xp are linearly independent, i.e. form a basis for V

row space of A ∈ Rm×n span of the rows rsA = {λTA, λ ∈ Rm} ⊆ Rn

column space of A ∈ Rm×n span of the columns csA = {Aλ, λ ∈ Rn} ⊆ Rm

rank of A ∈ Rm×n : rkA = dim(rsA) = dim(csA) ≤min(m,n)
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Reading :

to go further :
read [BERTSIMAS-TSITSIKLIS] :
Section 1.1

for the next class :
read [BERTSIMAS-TSITSIKLIS] :
Section 1.5 : Linear algebra background
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modeling LPs

how to model ?

1. decision variables : what a solution is made of?

2. constraints : what is a feasible solution?

3. objective : what is an optimal solution?

4. check the units or convert

5. check LP format (linear, continuous, non-strict inequalities) or reformulate
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ex 3 : doors & windows

A factory made of 3 workshops produces doors and windows. The workshops A, B, C are
open 4, 12 and 18 hours a week, respectively. Assembling one door occupies workshop A

for 1 hour and workshop C for 3 hours and the door is sold 3000 euros. Assembling one
window occupies workshops B and C for 2 hours each and a window is sold 5000 euros.
How to maximize the revenue?
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ex 3 : LP doors & windows

• decision variables?
• xD, xW (fractional) number of doors and windows produced a day

• constraints and objective?
• availability of each workshop (in hours/day), nonnegativity of the variables
• maximize revenue (in keuros)

max 3xD + 5xW

s.t. xD ≤ 4

2xW ≤ 12

3xD + 2xW ≤ 18

xD, xW ≥ 0
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ex 4 : network flow
network flow

A company delivers retail stores in 9 cities in Europe
from its unique factory USINE.
How to manage production and transportation
in order to :

• meet the demand of each store,

• not exceed the production limit,

• not exceed the line capacities,

• minimize the transportation costs?
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ex 4 : graph model

• find a flow on a capacitated
directed graph

• flow conservation at each
node : IN=OUT

USINE

LILLE

BREST

NICE

LONDRES

CAEN

NANCY

RENNES

PARIS

NANTES

LYON

TOULOUSE

MILAN

350

310

320
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ex 4 : LP model

• xℓ the quantity of products transported on line ℓ = (i, j) ∈ LINES
• TRANSITS= {LILLE,NICE,BREST}

min
∑

ℓ∈LINES
COSTℓxℓ

s.t.
∑

i∈TRANSITS
x(USINE,i) ≤ MAXPROD∑

i∈TRANSITS
x(i,j) ≥ DEMANDj , ∀j ∈ STORES

x(USINE,i) =
∑

j∈STORES
x(i,j), ∀i ∈ TRANSITS

0 ≤ xℓ ≤ CAPACITYℓ, ∀ℓ ∈ LINES.
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ex 5 : minimum distance

minimize L1 and L∞ norms
Find a solution x ∈ Rn of the system of equation Ax = b, A ∈ Rm×n, b ∈ Rm of minimum

• L1 norm :
‖x‖1 =

∑
j=1,...,n

|xj |

• L∞ norm :
‖x‖∞ = max

j=1,...,n
|xj |
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ex 5 : linearize the absolute value

• every value d ∈ R can be decomposed as d = u− v with u ≥ 0 and v ≥ 0

• in an infinite way, e.g. :

−4 = 4− 8 = 1000− 1004 = 2.7− 6.7 = 0− 4 = · · ·

• but only one decomposition minimizes u+ v : (u, v) =

(d, 0) si d ≥ 0

(0,−d) si d ≤ 0.

• and the minimum value is precisely the absolute value :
|d| =min(u,v)≥0{u+ v : d = u− v}

• mind ‖d‖1 =mind

∑
i |di|, positive independent terms, thusmin and

∑
can be

exchanged :

min
d

∑
i

|di| =
∑
i

min
di

|di| =
∑
i

min
di,ui,vi

{ui+vi : di = ui−vi} =min
d,u,v

∑
i

{ui+vi : di = ui−vi}.
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ex 5 : LP models min ‖x‖1 =min
∑

j |xj|
Two different ways to model |x|, x ∈ R

1. variable splitting :

|x| =min{x++x− |x = x+−x−, x+, x− ≥ 0}

min
n∑

j=1

(x+j + x−j )

s.t. Ax = b,

xj = x+j − x−j , ∀j
x+j , x

−
j ≥ 0, ∀j

2. supporting plane model : x

y

|x| =max{x,−x} =min{y | y ≥ x, y ≥ −x}

min
n∑

j=1

yj

s.t. Ax = b,

yj ≥ xj , ∀j
yj ≥ −xj , ∀j
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ex 5 : LP model min ‖x‖∞ =minmaxj |xj|

• y ≥ |xj | ⇐⇒ y ≥ xj ∧ y ≥ −xj

• y ≥maxj |xj | ⇐⇒ y ≥ xj ∧ y ≥ −xj (∀j)

min y

s.t. Ax = b,

y ≥ xj , ∀j
y ≥ −xj , ∀j
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ex 5 : norms and distances

• min |x| =min{y ≥ 0 | y ≥ x AND y ≥ −x} is a linear program
but NOTmax |x| =max{x,−x} =max{y ≥ 0 | y = x OR y = −x}

• we will see how to formulate disjunctions using binary (0/1) variables
e.g. to formulatemax ‖x‖1 andmax ‖x‖∞ as I(nteger)LPs

• modeling ‖x‖p = (
∑

j |xj |p)1/p for p ≥ 2 usually requires nonlinear functions
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ex 5 : data fitting

data fitting [BERTSIMAS-TSITSIKLIS]

Givenm observations – data points ai ∈ Rn and associate values bi ∈ R, i = 1..m –
predict the value of any point a ∈ Rn according to a linear regression model?

a best linear fit is a function :

b(a) = aTx+ y, for chosen x ∈ Rn, y ∈ R

minimizing the residual/prediction error |b(ai)− bi|, globally over the dataset i = 1..m, e.g :
Least Absolute Deviation or L1-regression :

min
∑
i

|b(ai)− bi|
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ex 5 : data fitting – LAD regression (1)

supporting planes

min
∑
i

di

s.t. di ≥
∑
j

aijxj + y − bi, ∀i

di ≥ −(
∑
j

aijxj + y − bi), ∀i

d ∈ Rm, x ∈ Rn, y ∈ R

sparse supporting planes

min
∑
i

di

s.t. ri =
∑
j

aijxj + y − bi, ∀i

di ≥ ri, ∀i
di ≥ −ri, ∀i
r, d ∈ Rm, x ∈ Rn, y ∈ R

Second model is better for many algorithms : larger (more variables and constraints) but its
constraint matrix is less dense (more zeros)
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ex 5 : data fitting – LAD regression (2)

variable splitting

min
∑
i

d+i + d−i

s.t. d+i − d−i =
∑
j

aijxj + y − bi, ∀i

d+i , d
−
i ≥ 0, ∀i

x ∈ Rn, y ∈ R

dual model (see later)

max
∑
i

bizi

s.t.
∑
i

aijzi = 0, ∀j∑
i

zi = 0,

zi ∈ [−1, 1], ∀i

Both models are equivalent by strong duality (see later) but the second one has much fewer
variables and non-bound constraints. The best algorithms for LAD regression
(Barrodale-Roberts) are special purpose simplex methods (see later) for dense matrices
and absolute values.
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Reading :

to go further :
read [BERTSIMAS-TSITSIKLIS] :
Sections 1.2, 1.3, 1.4

for the next class :
read [BERTSIMAS-TSITSIKLIS] :
Section 2.1 : Polyhedra and convex sets
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geometry and algebra

exercise : sizing PV panels
sizing PV panels
how to equip two roofs with PV panels, respectively 4m and 6m long, to maximize the total
power with an installation budget limited to 18ke, knowing that, one linear meter of PV
installed is :

• 3ke on roof 1 for 150Wp peak power

• 2ke on roof 2 for 250Wp peak power

max 150x1 + 250x2

s.t. x1 ≤ 4

x2 ≤ 6

3x1 + 2x2 ≤ 18

x1, x2 ≥ 0

linear program (see ex : doors and windows)
x1, x2 : installed length (in meters)
constraints : maximal length, budget
objective : maximize production
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graphical representation (ex : doors & windows)

max 3xD + 5xW

s.t. xD ≤ 4

xW ≤ 6

3xD + 2xW ≤ 18

xD, xW ≥ 0 0 1 2 3 4
0

2

4

6

(3,2)

15
27

36

xD

x
W

• solution space R2

• linear constraint ≡ halfspace, ex : {x ∈ R2 | 3xD + 2xW ≤ 18}
• feasible region ≡ intersection of a finite number of halfspaces ≜ polyhedron
• objective : z = 3xD + 5xW , optimum : move the line up z ↗ until unfeasible
• optimum solution : x∗

W = 6 and 3x∗
D + 2x∗

V = 18⇒ x∗
W = 6, x∗

D = 2, z∗ = 36
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graphical representation (ex : petroleum distillation)

min 20xK + 15xV

s.t. 3xK + 4xV ≥ 20

4xK + 2xV ≥ 15

2xK + 3xV ≥ 5

0 ≤ xK ≤ 9

0 ≤ xV ≤ 6

0 2 4 6 8
0

2

4

6

52.5

xK

x
V

• constraint 2xK + 3xV ≥ 5 is redundant

• constraints 3xK + 4xV ≥ 20 and 4xK + 2xV ≥ 15 are active/binding at the optimum
(2, 3.5) but not constraints xK ≥ 0 or xV ≤ 6
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graphical representation (ex : nuclear waste)

max 4xA + 8xB

s.t. xA + 3xB ≤ 450

2xA + xB ≤ 350

xA + xB ≤ 200

xA, xB ≥ 0 0 200 400
0

100

200

300

1.3 Meuros

xA

x
B
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geometry of linear programming

• the feasible region is a polyhedron = intersection of half-planes

• intuition : a linear function on a polyhedron reaches its min at a “corner”

• idea for solving an LP : evaluate the corners progressively

The primal simplex algorithm

1. find a first corner if exists

2. choose a feasible descent direction along an edge

3. if no direction, STOP : the corner is optimal

4. select the corner in this direction and goto step 2
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what is a corner ?
Theorem : vertex = extreme point = basic feasible solution
A nonempty polyhedron P = {x ∈ Rn|Ax ≥ b}, A ∈ Rm×n, b ∈ Rm and a feasible solution
x̂ ∈ P , then these are equivalent : x̂ is a

vertex extreme point basic (feasible) solution

∃c ∈ Rn, ∀x ∈ P \ {x̂}, x̂ = λx+ (1− λ)y, ∃n active linearly independent
c⊤x̂ < c⊤x x, y ∈ P ⇒ λ = 0 rows ai in A s.t. aix = bi

corners are associated to invertible submatrices of A and associated null slack variables :

aix+ si = bi, si = 0 ; their number ≤
(
m

n

)
is finite but large and not known a priori 54

vertex, extreme point, and basic solution (proof)
Theorem [BT 2.3]
x̂ ∈ P = {x ∈ Rn|Ax ≥ b}, A ∈ Rm×n, b ∈ Rm is either none or all together :
vertex extreme point basic (feasible) solution
∃c ∈ Rn, ∀x ∈ P \ {x̂}, x̂ = λx+ (1− λ)y, ∃n linearly independent rows
cT x̂ < cTx x, y ∈ P ⇒ λ = 0 ai in A s.t. aix = bi

Proof :

• x̂ vertex⇒ xpoint : ∃c, ∀x, y ∈ P \ {x̂}, cT x̂ < cTx and cT x̂ < cT y then
cT x̂ < λcTx+ (1− λ)cT y , ∀0 ≤ λ ≤ 1, then x̂ ̸= λx+ (1− λ)y

• x̂ not basic⇒ not xpoint : let I = {i|aix̂ = bi} then rk(aT
I ) < n then ∃d ∈ Rn, aT

I d = 0. Let
x = x̂+ ϵ.d and y = x̂− ϵ.d then x̂ = x+y

2
and x, y ∈ P : aT

i x = aT
i y = bi if i ∈ I , otherwise

aT
i x̂ > bi then aT

i x > bi and aT
i y > bi for ϵ small enough.

• x̂ basic feasible⇒ vertex : let c =
∑

i∈I ai then cT x̂ =
∑

i∈I bi ≤ cTx ∀x ∈ P , and equality holds
only for x̂ the unique solution of system aT

I x = bI .
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Example of extreme points
ex : doors & windows

max 3x1 + 5x2

s.t. x1 ≤ 4

x2 ≤ 6

3x1 + 2x2 ≤ 18

x1, x2 ≥ 0

A =


1 0

0 1

3 2

1 0

0 1


0 1 2 3 4

0

2

4

6
(2, 6)

(6, 0)

x1

x
2

• n = 2 variables (dimension),m = 5 constraints (edges)
• rows 2 and 3 are lin. independent, active at (2, 6) feasible : vertex
• rows 5 and 3 are lin. independent, active at (6, 0) unfeasible : basic solution
• rows 2 and 5 do not intersect (lin. dependent)

56

existence of optima and extreme points

Theorem : existence of an extreme point [BT 2.6]
a nonempty P = {x ∈ Rn|Ax ≥ b} has at least one extreme point
⇐⇒ it has no line : ∀x ∈ P , d ∈ Rn, {x+ θd|θ ∈ R} 6⊆ P
⇐⇒ A has n linearly independent rows

Theorem : existence of an optimal solution [BT 2.8]
Minimizing a linear function over P having at least one extreme point, then :
either optimal cost is −∞, or an extreme point is optimal.

P
unbounded
∞ optima / 0 vertex
∞ optima including 1 vertex

P
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existence of extreme points (proof)

Theorem : existence of an extreme point [BT 2.6]
nonempty P = {x ∈ Rn|Ax ≥ b}, A ∈ Rm×n has at least one extreme point
⇐⇒ it has no line : ∀x ∈ P , d ∈ Rn, {x+ θd|θ ∈ R} 6⊆ P
⇐⇒ A has n linearly independent rows

Proof :

• no line⇒ xpoint : let x ∈ P “of rank k”, i.e. I = {i|aix = bi} has k lin. indep. rows, if not basic then
k < n and ∃d, aT

I d = 0. The line (x, d) satisfies aT
I (x+ θd) = bi and it intersects the border of P ,

i.e. ∃θ̂, j ̸∈ I s.t. aT
j (x+ θ̂d) = bj , then aT

j d ̸= 0, then x′ = x+ θ̂d ∈ P is of rank k + 1. Repeat
until reaching n.

• (ai)i∈I linearly independent⇒ no line : if P contains a line x+ θd with d ̸= 0 then ai(x+ θd) ≥ bi

∀θ then aid = 0 ∀i ∈ I then d = 0.

58

existence of optima (proof)

Theorem : existence of an optimal solution [BT 2.8]
Minimizing a linear function over P having at least one extreme point, then :
either optimal cost is −∞, or an extreme point is optimal.

Proof :

• let x ∈ P of rank k < n, then ∃d, aT
I d = 0, ∀i ∈ I = {i|aix = bi}. Assume cT d ≤ 0 (or use −d)

then line (x, d) intersects the border of P at some x′ = x+ θd ∈ P of rank k + 1 (see previous
proof). If cT d = 0 then cTx′ = cTx. If cT d ≤ 0 then assume θ > 0 (or optimal cost=−∞), then
cTx′ < cTx. Repeat until reaching rank n, i.e. a basic feasible solution.

• let x∗ be a basic feasible solution of P of minimum cost, then cTx∗ ≤ cTx ∀x ∈ P
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optima and extreme points (exercise)

show that :

• P = {(x, y) ∈ R2 | x+ y = 0} is nonempty and has no extreme point

• (x, y) 7→ 5(x+ y) has a finite optimum on P
• min{5(x+ y) | (x, y) ∈ P} has an optimal solution which is an extreme point (not of P)

answer : put in standard form
min{5(x+ − x− + y+ − y−) | x+ − x− + y+ − y− = 0, x+, x−, y+, y− ≥ 0} reaches its
optimum at (0, 0, 0, 0)
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how to find a first corner ?

Theorem : basic solution for standard form [BT 2.4]
A nonempty polyhedron in standard form P = {x ∈ Rn|Ax = b, x ≥ 0} withm < n linear
independent rows A ∈ Rm×n : x ∈ Rn is a basic solution iff Ax = b and there existsm
linear independent columns Aj , j ∈ β ⊂ {1, . . . , n} s.t. xj = 0, ∀j 6∈ β.

Submatrix Aβ is invertible : its columns form a basis of Rm with basic variables (xj)j∈β .

Algorithm : find a basic solution

1. pickm linear independent columns Aj , j ∈ β ⊂ {1, . . . , n}
2. fix xj = 0, ∀j 6∈ β

3. solve the system ofm equations in Rm : Ax = A|βx|β = b

• the resulting basic solution x is feasible iff xj ≥ 0 ∀j (i.e. x|β = A−1
|β b ≥ 0)
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basic solution for standard form (proof)
Theorem : basic solution for standard form [BT 2.4]
A nonempty polyhedron in standard form P = {x ∈ Rn|Ax = b, x ≥ 0} withm linear
independent rows A ∈ Rm×n : x ∈ Rn is a basic solution iff Ax = b and there existsm
linear independent columns Aj , j ∈ β ⊂ {1, . . . , n} s.t. xj = 0, ∀j 6∈ β.

Proof :

• ⇐ : let x ∈ Rn and β as in the statement, then A|βx|β = Ax = b and x|β = A−1
|β b is uniquely

determined, then span(A|β) = Rn (otherwise ∃d, A|βd = 0 and A|βy = b would have many
solutions x|β + θd)

• ⇒ : let x basic and I = {i|xi ̸= 0}, then the active constraints (Ax = b and xi = 0 ∀i ̸∈ I) forms
a system with an unique solution (otherwise for two solutions x1 and x2 then d = x1 − x2 would
be orthogonal, i.e. not in the span=Rn) then A|Ix|I = b has a unique solution and then A|I has
lin. ind. columns. Since A hasm lin. ind. rows then there existm− |I| columns lin. ind. with A|I

and, by def of I , xi = 0 for any other column i.
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Example of basic solutions in standard form
check β = (1, 2, 3), β = (1, 3, 4), and β = (1, 3, 5)

max 3x1 + 5x2

s.t. x1 + x3 = 4

x2 + x4 = 6

3x1 + 2x2 + x5 = 18

x ≥ 0

A =

1 0 1 0 0

0 1 0 1 0

3 2 0 0 1


n = 5 variables,
m = 3 lin. indep. rows 0 1 2 3 4

0

2

4

6
(2, 6)

(6, 0)

x1

x
2

• β = (1, 2, 3) : Aβ =

(
1 0 1

0 1 0

3 2 0

)
invertible ; fix x4 = x5 = 0 solve Aβ

(
x1

x2

x3

)
=

(
4

6

18

)
:

x1 + x3 = 4, x2 = 6, 3x1 + 2x2 = 18 : x = (2, 6, 2, 0, 0) ≥ 0 feasible
• β = (1, 3, 4) : Aβ invertible, fix x2 = x5 = 0 solve x1 + x3 = 4, x4 = 6, 3x1 = 18 :
x = (6, 0,−2, 6, 0) 6≥ 0 unfeasible

• β = (1, 3, 5) not a base : Aβ is not invertible (cannot have x2 = x4 = 0 and x2 + x4 = 6) 63

how to find a next corner ?
Definition : degeneracy and adjacency
Let P = {x ∈ Rn|Ax = b, x ≥ 0} withm < n linear independent rows A ∈ Rm×n ; let
β ⊂ {1, . . . , n} defines a basis with associated basic solution x

• x is degenerate if xj = 0 for some basic variable j ∈ β

• two bases β and β′ are adjacent if they differ by 1 column

• a degenerate basic solution has different bases and more than n active constraints

D : basic nonfeasible degenerate
B and E : basic feasible nondegenerate
A and C : basic feasible degenerate

• non-degenerate adjacent bases correspond to adjacent vertices along an edge of P
• move to an adjacent vertex by swapping a basic and a non-basic column
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Example of degeneracy and adjacency
check point (2, 6) and add constraint 3x1 + x2 ≤ 12

max 3x1 + 5x2

s.t. x1 + x3 = 4

x2 + x4 = 6

3x1 + 2x2 + x5 = 18

x ≥ 0

A =

1 0 1 0 0

0 1 0 1 0

3 2 0 0 1


n = 5 variables,
m = 3 lin. indep. rows 0 1 2 3 4

0

2

4

6
(2, 6)

(6, 0)

x1

x
2

• (2, 6) lies on edges 3x1 + 2x2 = 18 (nonβ x5 = 0), x2 = 6 (x4 = 0) but x1, x2, x3 > 0

• bases (1, 2, 3) and (1, 3, 4) are adjacent, as they differ by 1 column :
the associated vertices (2, 6) and (6, 0) both satisfy x5 = 0 and lie on 3x1 + 2x2 = 18

• when adding redundant constraint 3x1 + x2 ≤ 12, vertex (2, 6) becomes degenerate :
• add column x6 and row (3, 1, 0, 0, 0, 1), then the basic solution (2, 6, 2, 0, 0, 0)

corresponds to 3 bases : (1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 3, 6) 65



ex 6 : capacity planning

capacity planning [BERTSIMAS-TSITSIKLIS]

find a least cost electric power capacity expansion plan :

• planning horizon : the next T ∈ N years

• forecast demand (in MW) : dt ≥ 0 for each year t = 1, . . . , T

• existing capacity (oil-fired plants, in MW) : et ≥ 0 available for each year t
• options for expanding capacities : (1) coal-fired plant and (2) nuclear plant

• lifetime (in years) : lj ∈ N, for each option j = 1, 2

• capital cost (in euros/MW) : cjt to install capacity j operable from year t
• political/safety measure : share of nuclear should never exceed 20% of available capacity
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ex 6 : LP model

variables xjt installed capacity (in MW) of type j = 1, 2 at year t = 1, . . . , T

objective minimize the installation costs
constraints each year, demand satisfaction + nuclear share

implied variables yjt available capacity (in MW) j = 1, 2 for year t

min
T∑
t=1

2∑
j=1

cjtxjt

s.t. yjt −
t∑

s=max{1,t−lj+1}

xjs = 0, ∀j = 1, 2, t = 1, . . . , T

y1t + y2t − ut = dt − et, ∀t = 1, . . . , T

8y2t − 2y1t + vt = 2et, ∀t = 1, . . . , T

xjt ≥ 0, yjt ≥ 0, ut ≥ 0, vt ≥ 0 ∀j = 1, 2, t = 1, . . . , T
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ex : basic solution (capacity planning)

min
T∑

t=1

2∑
j=1

cjtxjt

s.t. yjt −
t∑

s=max{1,t−lj+1}
xjs = 0, ∀j = 1, 2, t = 1, . . . , T

y1t + y2t − ut = dt − et, ∀t = 1, . . . , T

8y2t − 2y1t + vt = 2et, ∀t = 1, . . . , T

xjt ≥ 0, yjt ≥ 0, ut ≥ 0, vt ≥ 0 ∀j = 1, 2, t = 1, . . . , T


L 0 I 0 0 0

0 L 0 I 0 0

0 0 I I −I 0

0 0 −2I 8I 0 I





x1

x2

y1

y2

u

v


=


0

0

d− e

2e


n = 6T variables,m = 4T , A has linearly independent rows ;
I : identity matrix, L : lower triangular matrix of 1s and 0s basic solution (0, 0, 0, 0, e− d, 2e)

is feasible iff et ≥ dt, ∀t,
degenerate (4T > n−m zeros), other basis e.g (x1, x2, u, v)
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ex : basic solution and degeneracy (capacity planning)

reformulate by dropping the redundant variables y1 and y2, find a basic solution, and give
conditions of degeneracy (assume that T − lj + 1 ≤ 1 and constant et = E ≥ 0 ∀t)

min
T∑

t=1

2∑
j=1

cjtxjts.t.

t∑
s=1

x1s +

t∑
s=1

x2s − ut = dt − E, ∀t = 1, . . . , T

8

t∑
s=1

x2s − 2

t∑
s=1

x1s + vt = 2E, ∀t = 1, . . . , T

xjt ≥ 0, ut ≥ 0, vt ≥ 0 ∀j = 1, 2, t = 1, . . . , T

(
L L −I 0

−2L 8L 0 I

)
x1

x2

u

v

 =

(
d− E

2E

)

• basic solution (0, 0, E− d, 2E) : feasible iff E ≥ dt, ∀t, degenerate iff ∃t, E = 0 or E = dt

• basis (x1, v) and suppose thatDt = dt − dt−1 > 0 ∀t with d0 = E then the basic
solution (D, 0, 0, 2d) is feasible nondegenerate (full coal scenario)

• question : under which condition can we improve the cost by installing nuclear at t = 1?
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summary

• the feasible set of an LP is a polyhedron P
• if P is nonempty and bounded, then LP has a basic optimal solution

• we can solve LP by enumerating all basic solutions : move along the edges of P by
taking adjacent bases

• next lesson : the primal simplex algorithm improves the basic solution cost at each
iteration (if non-degenerate)
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reading :

to go further :
read [BERTSIMAS-TSITSIKLIS] :
Sections 2.2, 2.3, 2.4, 2.5, 2.6

for the next class :
read [BERTSIMAS-TSITSIKLIS] :
Section 1.6 : Algorithms and operation count
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the simplex methods

review

• min c⊤x over P = {Ax = b, x ≥ 0}, A ∈ Rm×n, rk(A) = m reaches its optimum at a
basic feasible solution

• a basis β ⊆ {1, . . . , n} is made ofm linearly independent columns of A and the
associated basic solution is : xβ = A−1

β b, x¬β = 0

• adjacent basic solutions sharem− 1 basic variables : β′ = β ∪ {j′} \ {j′′}
• adjacent basic solutions may coincide if degenerate (if xj′ = xj′′ = 0)

instead of visiting the basic solutions randomly, the primal simplex method selects the next
adjacent basic solution such that it is feasible and of better cost.
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feasible descent direction

minimize c⊤x over P = {x ∈ Rn|Ax = b, x ≥ 0}, and some point x ∈ Rn

feasible direction from x ∈ Rn

d ∈ Rn such that ∃θ > 0, x+ θd ∈ P

descent direction from x ∈ Rn

d ∈ Rn such that c⊤d < 0

if d is a feasible descent direction, then there is a feasible solution x′ = x+ θd strictly
improving upon x since c⊤x′ = c⊤x+ θ.c⊤d < c⊤x
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basic descent direction

min {c⊤x : Ax = b, x ≥ 0}, x a basic feasible solution of basis β, and j′ 6∈ β :

the j′th basic direction
d ∈ Rn : dj′ = 1, dj = 0, ∀j 6∈ β ∪ {j′}, and Ad = 0

is a feasible direction (if x nondegenerate) and dβ = −A−1
β Aj′ :Ad = 0 ⇒ A(x+ θd) = Ax = b

xj > 0 ∀j ∈ β ⇒ ∃θ > 0 : xβ + θdβ ≥ 0

reduced cost of a nonbasic variable xj′

c̄j′ = c⊤d = cj′ − c⊤β A
−1
β Aj′

• c̄j′ = c⊤d = c⊤(x+ d)− c⊤x is the cost deviation between solutions x and x+ d

• d is a descent direction iff c̄j′ < 0

• the reduced cost of a basic variable j ∈ β is always 0 : c̄j = cj − c⊤β A
−1
β Aj = cj − c⊤β ej = 0
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step length θ

β basis of x feasible nondegenerate, d feasible direction to j′ 6∈ β s.t. c⊤d = c̄j′ < 0

look for the largest value θ > 0 such that x′ = x+ θd remains feasible, i.e. x′ ≥ 0 :

Theorem [BT 3.2]
if d ≥ 0 then the LP is unbounded, otherwise
if j′′ ∈ argmin{−xj/dj , j ∈ β, dj < 0} and θ = −xj′′/dj′′ then x′ = x+ θd is a basic
feasible solution of basis β′ = β ∪ {j′} \ {j′′} :

• j′ enters the basis, j′′ exits the basis : constraint xj′′ ≥ 0 becomes active
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step length θ (proof)

β basis of x feasible nondegenerate, d feasible direction to j′ 6∈ β s.t. c⊤d = c̄j′ < 0

Theorem [BT 3.2]
if d ≥ 0 then the LP is unbounded, otherwise
if j′′ ∈ argmin{−xj/dj , j ∈ β, dj < 0} and θ = −xj′′/dj′′ then x′ = x+ θd is a basic
feasible solution of basis β′ = β ∪ {j′} \ {j′′} :

Proof :

• d ≥ 0 ⇒ x+ θd ∈ P ∀θ > 0 and c⊤(x+ θd) ↘ when θ ↗

• x nondegenerate⇒ xj′′ > 0⇒ θ > 0

• x′ ∈ P ⇐⇒ xj + θdj ≥ 0 ∀j ⇐⇒ xj + θdj ≥ 0 ∀j ∈ β : dj < 0 (since Ax′ = Ax = b)

• A−1
β Aj = ej , ∀j ∈ β \ {j′′}, and A−1

β Aj′ = −dβ has a nonzero j′′ component⇒ {Aj , j ∈ β′} are
linear independent⇒ β′ is a basis
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example : basic descent direction
check basis (1, 2) and find basic descents

minx≥0 2x1 + x2 + x3 + x4

s.t. x1 + x2 + x3 + x4 = 2

2x1 + 3x3 + 4x4 = 2

• m = 2, n = 4, rk(A) = 2, β = (1, 2) forms a basis
• x = (1, 1, 0, 0) feasible nondegenerate : xj > 0 ∀j ∈ β

• basic direction j = 3 : d3 = 1, d4 = 0, Ad =
(

d1 + d2 + 1

2d1 + 3

)
= 0 ⇒ dβ =

(
d1
d2

)
=
(

−3/2

1/2

)
• is a descent direction : c̄ = c⊤d = 2(−3/2) + (1/2) + 1 = −3/2 < 0

• step length : x′ = x+ θd ≥ 0 ⇒ x′
1 = 1− (3/2)θ ≥ 0 ⇒ θ ≤ 2/3

• x′ = (0, 4/3, 2/3, 0) basic feasible β′ = (2, 3), c⊤x′ = c⊤x+ θc̄3 = c⊤x− 1
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when stops the algorithm?

Theorem : optimality condition [BT 3.1]
Let x be a basic feasible solution of basis β and c̄ ∈ Rn the vector of reduced costs.

• if c̄j ≥ 0 ∀j 6∈ β then x is optimal

• if x is optimal and nondegenerate then c̄ ≥ 0

Proof :
(⇒) for any y ∈ P , let d = y − x and c¬β ≥ 0 :
Aβdβ +A¬βy¬β = Ad = Ay −Ax = b− b = 0 ⇒ dβ = −A−1

β A¬βy¬β ⇒
c⊤y − c⊤x = c⊤β dβ + c⊤¬βy¬β = (c⊤¬β − c⊤β A

−1
β A¬β)y¬β = c̄¬βy¬β ≥ 0

(⇐) if x nondegenerate and c̄j < 0, then j is nonbasic and of feasible improving direction, then x

nonoptimal
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example : basic improving direction (cont.)

check basis (2, 3)

minx≥0 2x1 + x2 + x3 + x4

s.t. x1 + x2 + x3 + x4 = 2

2x1 + 3x3 + 4x4 = 2

• note that optimum ≥ 2 since c⊤x = x1 + 2, ∀x feasible

• β = (2, 3) is a basis with x = (0, 4/3, 2/3, 0) nondegenerate
• the 2 basic directions are not descent :

• j = 1 : d = (1,−1/3,−2/3, 0) and c̄1 = c⊤d = 1 ≥ 0

• j = 4 : d = (0, 1/3,−4/3, 1) and c̄4 = c⊤d = 0 ≥ 0

• then x is optimal
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The primal simplex method (simple case)

steps howto :
1. get a basis β findm linearly independent columns
2. get a basic feasible x x¬β = 0, xβ = A−1

β b if xβ ≥ 0

halt condition (optimality) c̄ = c− cTβA
−1
β A ≥ 0 if nondegenerate

3. find an improving direction any j′ 6∈ β s.t. c̄j′ < 0 if nondegenerate
halt condition (unboundness) dβ = −A−1

β Aj′ ≥ 0

4. find the largest step length any j′′ ∈ argmin{−xj/dj | j ∈ β, dj < 0}
5. update the basis β := β ∪ {j′} \ {j′′}
6. goto 2 x := x− (xj′′/dj′′)d
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the primal simplex method

convergence [BT 3.3]
if P 6= ∅ and every basic feasible solution is nondegenerate then the simplex method
terminates after a finite number of iterations with either an optimal basis β or with some
direction d ≥ 0, Ad = 0, cT d < 0, and the optimal cost is −∞

Proof :

• cx decreases at each iteration, all x are basic feasible solutions

• the number of basic feasible solutions is finite bounded by Cm
n

in case of degeneracy : apply techniques (ex : fixed order subscripts) to avoid cycling on the
same vertex
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pivoting rules

• choice of the entering column j′ 6∈ β s.t. c̄j′ < 0, e.g. :
• largest cost decrease per unit change :min c̄j

• largest cost decrease :min θc̄j

• smallest subscript :min j

• choice of the exiting column j′′ ∈ argmin{−xj/dj | j ∈ β, dj < 0}
• trade-off between computation burden and efficiency,
e.g. compute a subset of reduced costs
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the initial basic feasible solution?

• if P = {Ax ≤ b, x ≥ 0}, then we directly get a basis from the slack variables :
P = {Ax+ Is = b, x ≥ 0, s ≥ 0}

• if the problem is already in standard formmin{cx,Ax = b, x ≥ 0}, then we can first
solve the auxiliary LP :

min{1.y, Ax+ Iy = b, x ≥ 0, y ≥ 0}

if optimum is 0 then we get a feasible basic solution for the original LP, otherwise it is
unfeasible (see [BERTSIMAS-TSITSIKLIS] Section 3.5 for details)
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implementations

• each iteration involves costly arithmetic operations :
• computing uT = cTβA

−1
β or A−1

β Aj takes O(m3) operations
• computing c̄j = cj − uTAj for all j ̸∈ β takes O(mn) operations

• revised simplex : update matrix A−1
β∪{j′′}\{j′} from A−1

β in O(mn)

• full tableau : maintain and update them× (n+ 1)matrix Aβ−1(b|A)

• specific data structures for sparse (many 0 entries in A) vs. dense matrices

• in theory, complexity is exponential in the worst case : the LP may have 2n extreme
points and the simplex method visits them all

• in practice, sophisticated implementations of the simplex method perform often better
than polynomial-time algorithms (interior point/barrier, ellipsoid) and have additional
features (duality, restart)

(see [BERTSIMAS-TSITSIKLIS] Section 3.3 for details)
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Ex : Simplex Algorithm
start at β1 = (3, 4, 5)

minx≥0 − 3x1 − 5x2

s.t. x1 + x3 = 4

x2 + x4 = 6

3x1 + 2x2 + x5 = 18.

A =

1 0 1 0 0

0 1 0 1 0

3 2 0 0 1


0 1 2 3 4

0

2

4

6

β1 β3

β2

β4

x1

x
2

• x = (0, 0, 4, 6, 18) is feasible nondegenerate
• let d1 = 0, d2 = 1 and Ad = 0 : d = (0, 1, 0,−1,−2), c̄ = c⊤d = −5 < 0⇒ descent
• find the largest θ > 0 s.t. x+ θd = (0, θ, 4, 6− θ, 18− 2θ) ≥ 0, i.e.
θ =min(6/1, 18/2) = 6 : new basis β = (2, 3, 5) and solution x+ θd = (0, 6, 4, 0, 6)

• next : d = (1, 0,−1, 0,−3), c̄ = −3 descent x+ θd = (θ, 6, 4− θ, 0, 6− 3θ) = (2, 6, 2, 0, 0)

• next : d = (2/3,−1,−2/3, 1, 0), c̄ = 3 optimum x = (2, 6, 2, 0, 0), cx = −36 85

reading :

to go further :
read [BERTSIMAS-TSITSIKLIS] :
Sections 3.1, 3.2, 3.3

for the next class :
read [BERTSIMAS-TSITSIKLIS] :
Section 1.6 : Algorithms and operation count
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duality

duality : motivation

A constrained nonlinear convex problem

P : z = min x2 + y2 : x+ y = 1 (not linear, still convex)

• unconstrained smooth convex optimization is easy : zero of the derivative

• penalization : relax constraint and penalize violation with price/multiplier u ∈ R

• Pu : zu = min x2 + y2 + u(1− x− y) provides a lower bound zu ≤ z :
(x, y) optimal for P ⇒ feasible for Pu and zu ≤ x2 + y2 + u(1− x− y) = z

• Pu is a relaxation of P

• the optimal solution of Pu is (u/2, u/2) :∇cu(x, y) = 0 iff (2x− u, 2y − u) = 0

• for u = 1 : (1/2, 1/2) is both optimal for P1 and feasible for P ,
thus it is optimal for P : 1/2 = z1 ≤ z ≤ (1/2)2 + (1/2)2 = 1/2
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lagrangian dual
lagrangian relaxation (general optimization)

P : z = min c(x)

s.t. g(x) = 0

x ≥ 0

Pu : zu = min c(x) + u⊤g(x)

s.t. x ≥ 0

with multipliers u ∈ Rm

dual problem
find the tightest (greater) lower bound zu of z :

D : d = maxu∈Rmzu

• weak duality d ≤ z always holds (by definition)
• strong duality d = z may hold if exists x optimal for some Pu and feasible for P
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specific properties of LP duality

• if P is an LP thenD is also an LP and the dual ofD is the primal P

• constraints/variables of P correspond to variables/constraints ofD

• strong duality always holds for LP

• if P is unbounded thenD is unfeasible, and conversely

• primal simplex : computes solutions in the dual space, stops when dual feasible

• dual simplex : computes solutions in the primal space, stops when primal feasible

• sensitive analysis : how to recover feasibility in the primal or in the dual space
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The dual linear program

Theorem : the dual of an LP is an LP

(P ) : min c⊤x

s.t. Ax = b, x ≥ 0

(D) : max u⊤b

s.t. u⊤A ≤ c⊤

Proof :

• zu = minx≥0c
Tx+ uT (b−Ax) = uT b+minx≥0(c

T − uTA)x

• zu =

{
uT b if (cT − uTA) ≥ 0

−∞ otherwise
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how to build the dual of an LP ?
primal/dual correspondence

min max
cost vector c RHS vector b

matrix A matrix A⊤

constraint aix = bi free variable ui ∈ R
constraint aix ≥ bi nonnegative variable ui ≥ 0

free variable xj ∈ R constraint u⊤Aj = cj
nonnegative variable xj ≥ 0 constraint u⊤Aj ≤ cj

P : min c⊤x+ d⊤y

s.t. Ax = b (u)

Dx+ Ey ≥ f (v)

x ≥ 0

D : max u⊤b+ v⊤f

s.t. A⊤u+D⊤v ≤ c (x)

E⊤v = d (y)

v ≥ 0

equivalent forms of (P ) give equivalent forms of (D)
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ex 7 : steel factory

steel factory
A factory produces steel in coils (bobines), tapes (rubans), and sheets (tôles) every week
up to 6000 tons, 4000 tons and 3500 tons, respectively. The selling prices are 25, 30, and 2
euros, respectively, per ton of product. Production involves two stages, heating (réchauffe)
and rolling (laminage). These two mills are available up to 35 hours and 40 hours a week,
respectively. The following table gives the number of tons of products that each mill can
process in 1 hour :

heating rolling
coils 200 200
tapes 200 140
sheets 200 160

The factory wants to maximize its profit.
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ex 7 : LP model

• decision variables?
• xC , xT , xS the quantity (in tons) of weekly produced coils, tapes and sheets

• constraints?
• mill occupation
• maximum production

P : max 25xC + 30xT + 2xS

s.t.
xC

200
+

xT

200
+

xS

200
≤ 35 (heating)

xC

200
+

xT

140
+

xS

160
≤ 40 (rolling)

0 ≤ xC ≤ 6000 (coils)

0 ≤ xT ≤ 4000 (tapes)

0 ≤ xS ≤ 3500 (sheets)
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ex : dual model (steel factory)

D : min 35uH + 40uR + 6000uC + 4000uT + 3500uS

s.t.
uH

200
+

uR

200
+ uC ≥ 25 (coils)

uH

200
+

uR

140
+ uT ≥ 30 (tapes)

uH

200
+

uR

160
+ uS ≥ 2 (sheets)

u ≥ 0
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weak duality

Theorem [BT 4.3]

• if x is feasible for P (min) and u is feasible forD (max) then : u⊤b ≤ cx

• if the optimal cost of P is −∞ thenD is unfeasible

• if the optimal cost ofD is +∞ then P is unfeasible

• if u⊤b = cx then x is optimal for P and u is optimal forD

Proof :

• if P in standard form : Ax = b, x ≥ 0 and u⊤A ≤ c⊤, then u⊤b = u⊤Ax ≤ cx.

• in any form : if (x, u) primal-dual feasible then by construction u⊤(Ax− b) ≥ 0 and
(c⊤ − u⊤A)x ≥ 0, then u⊤b ≤ u⊤Ax ≤ cx.
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strong duality

Theorem [BT 4.4]
if a linear programming problem has an optimal solution, so does its dual and their
respective optima are equal : u⊤b = c⊤x

Proof :

• let x an optimal solution of P = min{c⊤x|Ax = b, x ≥ 0} of basis β
• x optimal then the reduced costs are all nonnegative c̄⊤ = c⊤ − c⊤β A

−1
β A ≥ 0

• let u⊤ = c⊤β A
−1
β then u is feasible forD = max{u⊤b|u⊤A ≤ c⊤}

• u⊤b = c⊤β A
−1
β b = c⊤β xβ = c⊤x then u is optimal forD

At optimality : the primal reduced costs c̄⊤ are the dual slacks c⊤ − u⊤A
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complementary slackness

Theorem [BT 4.5]
let x feasible for P and u feasible forD then they are optimal iff

ui(a
⊤
i x− bi) = 0 ∀i row of P

(cj − u⊤Aj)xj = 0 ∀j row ofD.

Proof :

• (x, u) primal(min)-dual(max) feasible then ui(aix− bi) ≥ 0 and (cj − u⊤Aj)xj ≥ 0

• c⊤x− u⊤b =
∑

j(cj − u⊤Aj)xj +
∑

i ui(aix− bi) sum of nonnegative terms is zero iff all terms
are zero

Either a constraint is active at the optimum or the dual variable is zero
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exercise : optimality without simplex

show that β = (1, 3) is an optimal basis

P : min 13x1 + 10x2 + 6x3

s.t. 5x1 + x2 + 3x3 = 8

3x1 + x2 = 3

x1, x2, x3 ≥ 0

98

exercise : optimality without simplex

P : min 13x1 + 10x2 + 6x3

s.t. 5x1 + x2 + 3x3 = 8

3x1 + x2 = 3

x1, x2, x3 ≥ 0

D : max 8u1 + 3u2

s.t. 5u1 + 3u2 ≤ 13

u1 + u2 ≤ 10

3u1 ≤ 6

• β = {1, 3} ⇒ x2 = 0, x1 = 3/3 = 1, x3 = (8− 5)/3 = 1

• x = (1, 0, 1), x ≥ 0⇒ feasible, xj > 0, ∀j ∈ β ⇒ nondegenerate
• P in standard form⇒ first C.S. is always condition satisfied
• let u satisfying second C.S. condition, i.e. 5u1 + 3u2 = 13 and 3u1 = 6

• u = (2, 1) is feasible forD since u1 + u2 = 3 ≤ 10

• C.S. theorem⇒ x and u are optimal with cost 19
• basic dual solution u = c⊤β A

−1
β feasible ⇐⇒ reduced cost c̄ = c⊤ − u⊤A ≥ 0
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optimality conditions

Theorem : Karush-Kuhn-Tucker optimality conditions in LP
x is optimal for P = min{c⊤x|Ax = b, x ≥ 0} iff exists u ∈ Rm s.t. (x, u) satisfies :

1. primal feasibility : Ax = b

2. primal feasibility : x ≥ 0

3. dual feasibility : u⊤A ≤ c⊤

4. complementary slackness : xj > 0 ⇒ u⊤Aj = cj

• a basic feasible solution x always satisfy 1,2 and 4 with u⊤ = c⊤β A
−1
β

(xj > 0 ⇒ j ∈ β and c̄j = c⊤j − u⊤Aj = 0).

• Condition 3 is the halting condition c̄ ≥ 0 of the simplex algorithm

• if x is degenerate then solutions u of condition 4 may not be unique
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alt algorithm : dual simplex

(P ) : min{c⊤x : Ax = b, x ≥ 0} and (D) : max{u⊤b : u⊤A ≤ c⊤}

• a basis β determines basic solutions for P andD : xβ = A−1
β b and u⊤ = c⊤β A

−1
β

• satisfying complementary slackness : xj > 0 ⇒ j ∈ β ⇒ c̄j = cj − u⊤Aj = 0

• primal simplex algorithm maintains primal feasibility (xβ ≥ 0) and tries to achieve dual
feasibility (c̄⊤ = c⊤ − u⊤A ≥ 0)

dual simplex method

• equivalent to solving (D) with the primal simplex

• maintains dual feasibility (c̄ ≥ 0) and tries to achieve primal feasibility (xβ ≥ 0)

Usage : after modifying b or adding a new constraint to (P ), the dual basic solution
u⊤ = c⊤β A

−1
β remains feasible : start the dual simplex iterations from this basis
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alt algorithms : interior point
(P ) : min{c⊤x : Ax = b, x ≥ 0} and (D) : max{u⊤b : u⊤A ≤ c⊤}

KKT : Ax = b, x ≥ 0, v⊤ = c⊤ − u⊤A ≥ 0, and complementary slackness : x⊤v = 0

interior point methods

• iterates on primal feasible x and dual feasible u, v with x⊤v = n/t for increasing t

• KKT with disturbed complementary slackness : Ax = b, x ≥ 0, v ≥ 0, x⊤v = n/t

• = KKT for the centered problem P t : min{tc⊤x+ ϕ(x) : Ax = b} with barrier function
ϕ(x) = −

∑
j log(xj), a smooth approximation of the indicator function x ≥ 0

• given an interior point x > 0 : Ax = b, then P t can be efficiently solved with Newton
method and returns an other interior point xt > 0

• barrier method : at each iteration i, increase t = t(i) = µt(i− 1), solve Pt with Newton’s
method starting from xt(i−1) to get (xt, ut) and define vtj = 1/txt

j then (xt, ut, vt)

satisfies the disturbed KKT.

• primal-dual interior-point method : update also u, v within inner-loop (Newton) iterations
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Farka’s lemma and unfeasibility
theorem
A ∈ Rm×n, b ∈ Rm. Exactly one of the following holds :

1. ∃x ∈ Rn, x ≥ 0, Ax = b (i.e. P =minx≥0{cx : Ax = b} is feasible)
2. ∃u ∈ Rm, u⊤A ≥ 0 and u⊤b < 0 (xor b can be separated from {Ax, x ≥ 0} by a plane)

Proof :
(1 ⇒ ¬2) if x ∈ P and u⊤A ≥ 0 then u⊤b = u⊤Ax ≥ 0

(¬1 ⇒ 2) if P : max{0|Ax = b, x ≥ 0} is unfeasible thenD : min {u⊤b|u⊤A ≥ 0} is either
unbounded or unfeasible. Since u = 0 is feasible forD, then (2) holds.

if b is not in the cone {Ax, x ≥ 0} spanned by the columns ofA
then a separating hyperplane {x ∈ Rm|u⊤x = 0} exists
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reading :

to go further :
read [BERTSIMAS-TSITSIKLIS] :
Sections 4.1, 4.2, 4.5, 4.6, 4.7

for the next class :
read [BERTSIMAS-TSITSIKLIS] :
Section 4.4 : Optimal dual variables as marginal costs
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sensitive analysis

goal of sensitive analysis

Most LP models of real-world decision problems rely on forecast/inaccurate data and
incomplete knowledge

• a model is more reliable if its solutions are less sensitive to changes in data

• a model is more robust if its solutions are less sensitive to addition of variables/constraints

evaluate the sensitivity of the optimal solution of an LP
to one structural change in the LP

without having to solve the LP again for every possible value change.
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the core idea

• let P in standard form P : min{c⊤x | Ax = b, x ≥ 0}
• when the simplex method stops with an optimal solution, it returns an optimal basis β

and associate primal and dual solutions :

x = (xβ , x¬β) = (A−1
β b, 0) and u⊤ = c⊤β A

−1
β satisfying :

xβ ≥ 0 primal feasibility

c̄⊤ = c⊤ − u⊤A ≥ 0 dual feasibility

(primal feas. Ax = b and comp. slackness c̄β = 0 satisfied by construction of x and u)

• when the problem changes, check how these conditions are affected
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adding a new variable/column

• new variable xn+1 and column (cn+1, An+1)

• equivalent to suppose n+ 1 is non-basic and xn+1 = 0

• β remains a basis and xβ = A−1
β b, x¬β∪{n+1} = 0 is primal feasible

• it remains optimal if u⊤ = c⊤β A
−1
β is dual feasible, i.e. n+ 1 is not a descent direction :

c̄n+1 = cn+1 − u⊤An+1 ≥ 0

• then, the optimal value c⊤β xβ does not change

• otherwise, if n+ 1 is a descent direction : run additional iterations of the primal simplex
algorithm starting from the primal feasible basis β
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example : adding a variable

given β = (1, 3) optimal basis x⊤ = (1, 0, 1), u⊤ = (2, 1) primal-dual feasible, opt = 19

add column A4 = (1, 1) : for which cost c4 = δ the basis remains optimal?

P : min 13x1 + 10x2 + 6x3 + δx4

s.t. 5x1 + x2 + 3x3 + x4 = 8

3x1 + x2 + x4 = 3

x1, x2, x3, x4 ≥ 0

D : max 8u1 + 3u2

s.t. 5u1 + 3u2 ≤ 13

u1 + u2 ≤ 10

3u1 ≤ 6

u1 + u2 ≤ δ

• β = (1, 3) remains a basis, x⊤ = (1, 0, 1, 0) primal feasible

• u⊤ = (2, 1) remains feasible iff the dual constraint is satisfied u1 + u2 = 3 ≤ δ

• the optimal solution x and value 19 do not change when δ ≥ 3
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changing the right hand side vector

• let b′k = bk + δ, i.e. b′ = b+ δek for a given constraint k = 1, . . . ,m

• β remains a basis and u⊤ = c⊤β A
−1
β remains dual feasible (c⊤ − u⊤A ≥ 0)

• β remains optimal if the new primal solution x′ = A−1
β b′ is still feasible, i.e :

x′
β = xβ + δA−1

β ek ≥ 0

• then, the optimal cost varies by δuk = u⊤b′ − u⊤b

• the dual value uk is the marginal cost (or shadow price) per unit increase of bk
• otherwise, if x′ not feasible : run additional iterations of the dual simplex algorithm
starting from the dual feasible basis β
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example : changing b

given β = (1, 3) optimal basis x⊤ = (1, 0, 1), u⊤ = (2, 1) primal-dual feasible, opt = 19

change RHS in the first constraint b′1 = b1 + δ

P : min 13x1 + 10x2 + 6x3

s.t. 5x1 + x2 + 3x3 = 8 + δ

3x1 + x2 = 3

x1, x2, x3 ≥ 0

D : max (8 + δ)u1 + 3u2

s.t. 5u1 + 3u2 ≤ 13

u1 + u2 ≤ 10

3u1 ≤ 6

• β remains a basis, u⊤ remains dual feasible

• x′ = (1, 0, 1 + δ
3 ) is feasible iff 1 +

δ
3 ≥ 0

• x′ remains optimal if δ ≥ −3 and the optimum value increases by u⊤b′ − u⊤b = u1δ

• increasing b1 by δ = 1 unit induces a marginal (additional) cost u1 = 2
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changing the cost of a non-basic variable

• let c′j = cj + δ for some non-basic variable j 6∈ β

• β remains a basis and xβ = A−1
β b ≥ 0 remains primal feasible

• β remains optimal if the basic dual solution u⊤ = c⊤β A
−1
β remains feasible,

i.e. j is still not a descent direction :

c̄′j = (cj + δ)− u⊤Aj = c̄j + δ ≥ 0

• then, the optimal value c⊤β xβ does not change

• the reduced cost c̄j is the cost reduction value from which j becomes profitable

• otherwise, j is a descent direction : run additional iterations of the primal simplex
algorithm starting from the primal feasible basis β
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example : changing c (non-basic)

β = (1, 3) optimal basis x⊤ = (1, 0, 1), u⊤ = (2, 1) primal-dual feasible, opt = 19

change the non-basic cost c2 by δ

P : min 13x1 + (10 + δ)x2 + 6x3

s.t. 5x1 + x2 + 3x3 = 8

3x1 + x2 = 3

x1, x2, x3 ≥ 0

D : max 8u1 + 3u2

s.t. 5u1 + 3u2 ≤ 13

u1 + u2 ≤ 10 + δ

3u1 ≤ 6

• β remains a basis, x and u are still basic and x remains feasible

• u remains feasible iff c̄2 + δ = (10 + δ)− (u1 + u2) ≥ 0, i.e. δ ≥ −7

• optimal solutions and values do not change while δ ≥ −7 = −c̄2

• x2 becomes profitable when its cost is below 10− c̄2 = 3
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changing the cost of a basic variable

• let c′j = cj + δ for some basic variable j ∈ β

• β remains a basis and xβ = A−1
β b ≥ 0 remains primal feasible

• β remains optimal iff the new dual basic solution u′⊤ = c′⊤β A−1
β is feasible :

c̄′
⊤
¬β = c̄⊤¬β − δe⊤j A

−1
β A¬β ≥ 0

• then, the optimal cost varies by δxj = (c′⊤ − c⊤)x

• xj is the marginal cost per unit increase of cj
• otherwise an improving direction exists and we must run additional iterations of the
primal simplex algorithm from β to reach an optimal basis
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example : changing c (basic)

β = {1, 3} optimal basis x⊤ = (1, 0, 1), u⊤ = (2, 1) primal-dual feasible, opt = 19

change the (basic) cost c1 by δ

P : min (13 + δ)x1 + 10x2 + 6x3

s.t. 5x1 + x2 + 3x3 = 8

3x1 + x2 = 3

x1, x2, x3 ≥ 0

D : max 8u1 + 3u2

s.t. 5u1 + 3u2 ≤ 13 + δ

u1 + u2 ≤ 10

3u1 ≤ 6

• β remains a basis, x⊤ remains primal feasible
• new dual solution u′ solves 5u′

1 + 3u′
2 = 13 + δ, 3u′

1 = 6 : u′ = (2, 1 + δ
3 )

• u′ is feasible iff u′
1 + u′

2 = 2 + 1 + δ
3 ≤ 10, i.e. if δ ≤ 21

• and the optimum value increases by x1δ = δ

• x1 is less profitable than x2 if c1 is above 13 + 21 = 31
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adding a new inequality constraint

• add a violated constraint a⊤m+1x ≥ bm+1

• by substitution, we may assume that am+1,j = 0 ∀j 6∈ β

• add a slack variable xn+1 and get a new basis β′ = β ∪ {n+ 1} :

Aβ′ =

(
Aβ 0

a⊤m+1 −1

)
A−1

β′ =

(
A−1

β 0

a⊤m+1A
−1
β −1

)

• u⊤ = (c⊤β , 0)A
−1
β′ = (c⊤β A

−1
β , 0) is feasible as the reduced costs are unchanged :

c̄′
⊤
= (c⊤, 0)− (c⊤β , 0)A

−1
β′ A = (c̄⊤, 0)

• run additional iterations of the dual simplex algorithm to recover primal feasibility

• for equality constraints, introduce an artificial variable as in the two-phase method
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example : adding a constraint

β = (1, 3) optimal basis x⊤ = (1, 0, 1), u⊤ = (2, 1) primal-dual feasible, opt = 19

adding constraint x1 + x3 ≤ 1 and slack variable x4

P : min 13x1 + 10x2 + 6x3

s.t. 5x1 + x2 + 3x3 = 8

3x1 + x2 = 3

x1 + x3 + x4 = 1

x1, x2, x3, x4 ≥ 0

D : max 8u1 + 3u2 + u3

s.t. 5u1 + 3u2 + u3 ≤ 13

u1 + u2 ≤ 10

3u1 + u3 ≤ 6

u3 ≤ 0

• β = {1, 3, 4} is a basis, u⊤ = (2, 1, 0) is dual feasible

• x⊤ = (1, 0, 1,−1) is not primal feasible
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changing a non-basic column

• let a′ij = aij + δ for some constraint i and non-basic variable j 6∈ β

• β remains a basis and xβ = A−1
β b ≥ 0 is primal feasible

• β remains optimal if u⊤ = c⊤β A
−1
β remains feasible :

c̄′j = cj − c⊤β A
−1
β (Aj + δei)

= c̄j − δui ≥ 0

• then, the optimal value c⊤β xβ does not change

• otherwise, j becomes a descent direction : run additional iterations of the primal
simplex algorithm starting from the primal feasible basis β

117

example : changing Aj (non-basic)

β = {1, 3} optimal basis x⊤ = (1, 0, 1), u⊤ = (2, 1) primal-dual feasible, opt = 19

changing coefficient in the non-basic column A2

P : min 13x1 + 10x2 + 6x3

s.t. 5x1 + (1 + δ)x2 + 3x3 = 8

3x1 + x2 = 3

x1, x2, x3 ≥ 0

D : max 8u1 + 3u2

s.t. 5u1 + 3u2 ≤ 13

(1 + δ)u1 + u2 ≤ 10

3u1 ≤ 6

• β remains a basis, x⊤ remains primal feasible

• u⊤ remains feasible iff (1 + δ)u1 + u2 = 3 + δ ≤ 10

• optimal solutions and values do not change while δ ≤ 7 = c̄2
u1
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changing a basic column

• it’s complicated...
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applications in computing

take advantage of warm-start (feasible primal/dual solutions) in iterative solutions :

• constraint generation : generate constraints progressively when they are violated

• column generation : generate nonbasic variables progressively when they are profitable

• branch-and-bound : update the variable bounds dynamically

• parametric simplex method for solving LP with a variable parameter
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exercise (steel factory)

• implement the primal and the dual models of steel factory with Gurobipy

• get the dual optimal values : Constr.pi
• get the slack values : Constr.slack
• get the reduced costs : Var.rc
• how to interpret a zero slack value?

• how to interpret a non-zero reduced cost? simulate the change

• how to interpret a non-zero dual value? simulate the change
• play also with the attributes (see the Gurobi documentation) :

• Var : VBasis, SAObjLow/Up, SALBLow/Up, SAUBLow/Up
• Constr : CBasis, SASRHSLow/Up
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exercise (steel factory) : notes

• a zero slack value for a mill : the corresponding dual value is the marginal cost of an
extra hour of availability of the mill

• a negative reduced cost for a product (that is not in the solution) : how much the unit
price of the product have to be raised to make it profitable / the marginal cost of
producing 1 unit of the product (if feasible)

• be careful with the signs as the model is not in standard form
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reading :

to go further :
read [BERTSIMAS-TSITSIKLIS] :
Section 5.1
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