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decision is optimization
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select the best/optimum  
of all possible alternatives/solutions 

regarding a quantitative criterion/objective
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decision: operation/strategy, static/dynamic, short/long-term
solution: plan/schedule, path/flow/routing, assignment/layout/design
objective: duration, distance/space, cost/profit/preference, amount/level

select the best solution regarding the objective
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some historical FR players:

a tool for decision support: 

 mathematical optimization aka operational research

scientist in optimization:  
understand the business, do maths/cs, solve problems



1. build an abstract model of a concrete system
2. derive a mathematical formulation: relationships/unknowns
3. apply an algorithm to solve the model
4. derive practical solutions

mathematical optimization for decision 



- models are approximate

- data are uncertain

- calculations are truncated

solve ? theory/practice 

feasibility ? optimality ?

- finite time  reasonable time≠
- provable with a gap tolerance

- provable locally vs. globally



machine learning 

control 

game theory, economics, calculus,... 
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find a best model/data match: min empirical risk (supervised), maxreward (reinforcement), min distance 
(clustering), max homogeneity (decision tree), max margin (svm), max likelihood (markov process).

find a command  to optimize trajectory  s.t. u(t) x(t) x′ (t) = g(x(t), u(t))

math optimization also works for:

other advanced options for decision:

simulation           given a reliable model but no good math formulation 

machine learning  given historical data but no good reliable model 

hybridations          evaluate computed solutions by simulation (e.g. black-box optimization), learn mathematical models 

mathematical optimization  decision support≠



- reliable models: how accurate ? close to reality ?

- optimality certificates: how good is the solution ?

- versatile algorithms: if the problem changes ?

- efficient algorithms: solution times for complex/large problems ?

math opt for decision (specs 1) 
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- discrete decisions and logical relationships (switch on or off ? if off then no process)

- uncertain data (approximations and forecasts)
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combinatorial optimization

stochastic optimization

math opt for decision (specs 2) 



this PSL week: 

a quick overview of
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combinatorial optimization

stochastic optimization

monday-wednesday morning

wednesday afternoon-friday

Sophie Demassey (Mines/CMA) 

https://sofdem.github.io

Welington de Oliveira (Mines/CMA) 

https://www.oliveira.mat.br

https://sofdem.github.io
https://www.oliveira.mat.br
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combinatorial optimization

mixed integer linear programming (MILP)
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combinatorial optimization: beyond MILP

NOT in this course:

- graph theory and combinatorial structures

- metaheuristics and approximation algorithms

- Logic or Constraint Programming

- Linear or Nonlinear Programming ( just a glimpse)

- advanced theoretic topics in MI(N)LP
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focus on practical MILP

IN this course: a practical approach how to model and solve

- MILP modeling techniques 

- some applications

- notions of complexity

- main techniques to solve MILPs: bounding, branching, cutting

- modern MILP solvers (aka algorithms) and their usage

- steps towards reformulation, duality-based decomposition, and convex MINLP

- technical results without theoretical proofs (see the bibliography to learn more)
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why the MILP lense ?

broad applicability: 

- logical conditions as binary variables and linear inequalities

- nonlinear relations (physic/economic) as piecewise-linear fits

- convex NonLP ≈ LP   convex MINLP ≈ MILP (theoretically)⟹
versatility:

- generic form = generic solvers fruit of many research works

- specific problem = specific model + generic solver + specific options 

efficiency:

- easy LP + partial enumeration 

- sophisticated strategies and algorithmic components
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learning goals

after this course, you should be able to: 

- identify if an optimization problem is eligible to MILP

- formulate it as a MILP, identify its complexities, and implement the model

- run an off-the-shelf MILP solver, understand the solution process and ways to improve it

- describe main applications of combinatorial optimization: domains and problems

- describe the principle of advanced solution methods and their usage



validation    be there and participate

retake         the code of the mini-project (to send by email before march 15)
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evaluation & practice



Output define K points as centers 
so as to minimize the sum of the 
distances between each point and 
its nearest center.

K-median clustering
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K-mean clustering

Output partition the points into 
K sets so as to minimize the sum 
of the distances between each 
point and the mean of points in 
its cluster.

Input n data points , a 
number K of clusters. Euclidean 
distance.

mj ∈ ℝp

project:  

power generation

- deterministic & stochastic variants

- proposed dev environment: Jupyter Notebook, Google Colab, Gurobi solver, 

python API:   code + report directly through your browser

- goals: model as a MILP, implement and call a solver 

- correctness >>  completeness 
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course schedule

course project

Mon AM modeling model (1)

Mon PM complexity model (2)

Tue AM algorithms code (1)

Tue PM modern solvers code (2)

Wed AM decomposition code (3)

ASK for explanations and breaks



the MILP way

Sophie Demassey 2023

a practical view

19(1)



1how to model ?

2how difficult ?

3how to solve ?
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1how to model ?

2how difficult ?

3how to solve ?

21
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Mathematical Program 

f(x)
g(x) ≤ 0
x ∈ X ⊆ ℝn

subject to:minimize

• max f(x) = − min(−f )(x)
• g(x) ≥ b ≡ − g(x) + b ≤ 0
• sign  or  not allowed in MP 

(this and beyond: see CLP)
< ≠

program = plan (e.g. military)

variables 
objective 
constraints

x ∈ ℝn

f : ℝn → ℝ
g : ℝn → ℝm

Definition Remark
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Mixed Integer Linear Program 

 min{f(x) | g(x) ≤ 0, x ∈ ℤp × ℝn−p}

min c⊤x
Ax ≥ b

x ∈ ℤp × ℝn−p

c ∈ ℝn, A ∈ ℝm×n, b ∈ ℝm

s.t.: 

min
n

∑
j=1

cjxj
n

∑
j=1

aijxj ≥ bi ∀i = 1,…, m

xj ∈ ℤ
xj ∈ ℝ

∀j = 1,…, p
∀j = p+1,…, n

s.t.:

with linear functions  and : f g
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Mixed Integer Linear Program 

min cx
Ax ≥ b
x ∈ ℤp × ℝn−p

objective                                                   
linear constraints                          
integrity constraints       
right hand side (rhs)                       
cost vector                                     
coefficient matrix                           
solution space                                          
feasible set          

cx
Ax ≥ b

x1, …, xp ∈ ℤ
b ∈ ℝm

c⊤ ∈ ℝn

A ∈ ℝm×n

{x ∈ ℝn}
{x ∈ ℤp × ℝn−p |Ax ≥ b}

terminology

s.t.:
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waste management

2 types of nuclear waste A, B with different 
unit profit/processing time going through 3 
processes I, II and III with limited availability 

objective: maximize the profit.  

I II III unit 
profit

A 1h 2h 1h 4k€

B 3h 1h 1h 8k€

available 450h 300h 200h

max 4a + 8b
a + 3b ≤ 450

a, b ∈ ℤ+

2a + b ≤ 300
a + b ≤ 200

s.t.:

 number of processed units of A and B resp.a, b



modeling logic as linear in !
26



- is item j selected ? 

- is item j assigned to item i ? 

- at most  available itemsn
-  is it greater than  ?z ∈ ℝ+ a

true or false
01
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x1, …, xn ∈ {0,1}
x ∈ {0,1}, z ∈ ℝ, z ≥ ax

xij ∈ {0,1}
xj ∈ {0,1}

binary variables to model true/false conditions on objects 



Input n items, value cj and weight wj 
for each item j, capacity K. 
Output a maximum value subset of items 
whose total weight does not exceed K.

Integer Knapsack 

Problem

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 3, 2014

max
n∑

j=1
c j x j

s.t.
n∑

j=1
w j x j ≤ K

x j ∈ {0,1} j = 1..n

min
n∑

j=1
c j x j +

n∑

j=1

m∑

i=1
di j yi j

s.t.
n∑

j=1
yi j = 1 i = 1..m

yi j ≤ x j j = 1..n, i = 1..m

x j ∈ {0,1} j = 1..n

yi j ∈ {0,1} j = 1..n, i = 1..m

xj is item j packed ? 28



- either x or y

- if x then y

- if x then z ≤ a

logic with binaries

“big M constraint” 
big enough but keep it tight !

29

 binary variables;  continuous variable;  constantsx, y z a, k, n

linear constraints on binary variables to model logical relations between objects

x + y = 1
y ≥ x

z ≤ a + (M − a)(1 − x)



- either x or y

- if x then y

- if x then z ≤ a

- if not x then z ≥ a

- at most 1 out of n

- at least k out of n

logic with binaries

29

 binary variables;  continuous variable;  constantsx, y z a, k, n

linear constraints on binary variables to model logical relations between objects

x + y = 1
y ≥ x

z ≤ a + (M − a)(1 − x)
z ≥ a − (M + a)x

x1 + ⋯ + xn ≤ 1
x1 + ⋯ + xn ≥ k



Input n facility locations, m customers, 
cost cj to open facility j, cost dij to 
serve customer i from facility j 
Output a mimimum (opening and service) cost 
assignment of customers to facilities. 

Uncapacitated 

Facility Location 

Problem

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 3, 2014

max
n∑

j=1
c j x j

s.t.
n∑

j=1
w j x j ≤ K

x j ∈ {0,1} j = 1..n

min
n∑

j=1
c j x j +

n∑

j=1

m∑

i=1
di j yi j

s.t.
n∑

j=1
yi j = 1 i = 1..m

yi j ≤ x j j = 1..n, i = 1..m

x j ∈ {0,1} j = 1..n

yi j ∈ {0,1} j = 1..n, i = 1..m

xj is location j open ? yij is customer i served from j ?
30

or (if d positive)

n

∑
j=1

yij ≥ 1



Input n data points, distance dij between 
each two points i,j, number k of clusters. 
Output k centers minimizing the sum of 
distances between each point and its 
nearest center.

K-median clustering

xj is j a center ? yij is j the nearest center of i ?
31



Output define K points as centers so as to 
minimize the sum of the distances between 
each point and its nearest center.

K-median clustering

32

K-mean clustering

Output partition the points into K sets so 
as to minimize the sum of the distances 
between each point and the mean of points 
in its cluster.

Input n data points , a number 
K of clusters. Euclidean distance.

mj ∈ ℝp



K-mean clustering
xjk is j assigned to cluster k ? 
yk coordinates of the center of k ? 
djk distance from j to the center of k ?
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distances cannot be precomputed:  

decision variables and nonlinear constraints

min
K

∑
k=1

n

∑
j=1

xjkdjk

s . t . djk =
p

∑
i=1

(mi
j − yi

k)2 ∀j, k

K

∑
k=1

xjk = 1 ∀j

xjk ∈ {0,1}, yi
k ∈ ℝ, djk ≥ 0

nonconvex !

nonlinear



K-mean clustering
djk distance from j to the center of its cluster k ?

34

exact reformulation as a convex MINLP... still slower than specialized heuristics

min
K

∑
k=1

n

∑
j=1

djk

s . t . djk ≥
p

∑
i=1

(mi
j − yi

k)2 − djk(1 − xjk) ∀j, k

K

∑
k=1

xjk = 1 ∀j

xjk ∈ {0,1}, yi
k ∈ ℝ, djk ≥ 0

min
j

mi
j ≤ yi

k ≤ max
j

mi
j ∀i, k

y1
k ≤ y1

k+1 ∀k

"convexify" 
without the integrity 

constraints the feasible 

set it convex  

symmetry breaking 

(fix an arbitrary order)

bounding 

improve the model by 

reducing the search space 

{x | f(x) ≤ d}



modelling nonlinear functions
setup value

piecewise linear

discrete values

36



setup value

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 3, 2014

set-up value:
f : [0,U ] ⊆R+ →R+

f (x) =
{

0 if x = 0

ax +b if 0 < x ≤U

f (x) = ax +bδ
εδ≤ x ≤Uδ
δ ∈ {0,1}

discrete values:
f (x) = fi if x = i

f (x) =∑
i δi fi

with SOS1(δi )

piecewise linear:
linear on [ai−1, ai ]

f (x) =∑
i δi f (ai )

with SOS2(δi )

U"
# is x positive ? 37



discrete values

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 3, 2014

set-up value:
f : [0,U ] ⊆R+ →R+

f (x) =
{

0 if x = 0

ax +b if 0 < x ≤U

f (x) = ax +bδ
εδ≤ x ≤Uδ
δ ∈ {0,1}

discrete values:
f (x) = fi if x = i

f (x) =∑
i δi fi∑

i iδi = x∑
i δi = 1

δi ∈ {0,1} i = 0..n

piecewise linear:
linear on [ai−1, ai ]

f (x) =∑
i δi f (ai )

with SOS2(δi )

#i is x=i (and f(x)=fi) ? 38



discrete values

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 3, 2014

set-up value:
f : [0,U ] ⊆R+ →R+

f (x) =
{

0 if x = 0

ax +b if 0 < x ≤U

f (x) = ax +bδ
εδ≤ x ≤Uδ
δ ∈ {0,1}

discrete values:
f (x) = fi if x = i

f (x) =∑
i δi fi∑

i iδi = x∑
i δi = 1

δi ∈ {0,1} i = 0..n

piecewise linear:
linear on [ai−1, ai ]

f (x) =∑
i δi f (ai )

with SOS2(δi )

Special Ordered Set of type 1:  

ordered set of variables, all zero except at most one

#i is x=i (and f(x)=fi) ?

SOS1($)≥

38



piecewise linear

Special Ordered Set of type 2:  

ordered set of variables, all zero except at most two consecutive

%i is x=ai ? (then &iai +&i+1ai+1 in [ai,ai+1] if &i +&i+1 =1)

SOS2(%)
39



modeling with ℤ
40



xi = 5
to order  i is the 5th item 

to count  5 items are selected 

to measure time   task i starts at time 5 

to measure space item i is located on floor 5

≃ $i5 = 1
41



Binary Integer Linear Program (BIP)    {0,1}n 

Integer Linear Program (IP)     ℤn 

Mixed Integer Linear Program (MIP)       ℤn  U Qn

42



Output define K points as centers 
so as to minimize the sum of the 
distances between each point and 
its nearest center.

K-median clustering

43

K-mean clustering

Output partition the points into 
K sets so as to minimize the sum 
of the distances between each 
point and the mean of points in 
its cluster.

Input n data points , a 
number K of clusters. Euclidean 
distance.

mj ∈ ℝp

project:  

power generation
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1/ basic power generation problem

Output 
a number of units to commit and their production level to meet 
the demand on each period and minimize the operation costs.

Input  
demand  (MW) for each period  of length  (h),  
 units of each type  with power output range  (MW).  

Base cost  (€/h) to operate a unit at its min level  
+ cost  (€/MWh) per each extra MWh.

Dp p ∈ {0,…, P − 1} Δp
Nt t ∈ T [Lt, Lt]

Cb
t

Cr
t

- no need to know the activity of each individual unit

- be careful with equations in power (MW) or in energy (MWh)

- keep the same order of magnitude for data
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xtp number of units of type t to commit on period p 
ltp extra output (MW) of the units of type t on period p

Input  
demand  (MW) for each period  of length  (h),  
 units of each type  with power output range  (MW).  

Base cost  (€/h) to operate a unit at its min level  
+ cost  (€/MWh) per each extra MWh.

Dp p ∈ {0,…, P − 1} Δp
Nt t ∈ T [Lt, Lt]

Cb
t

Cr
t



the MILP way

Sophie Demassey 2023

a practical view

1(2)



1how to model ?

2how difficult ?

3how to solve ?

2
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waste management

2 types of nuclear waste A, B with 
different unit profit/processing time 
going through 3 processes I, II and III 
with limited availability 

objective: maximize the profit.  

I II III profit

A 1h 2h 1h 4k€

B 3h 1h 1h 8k€

available 450h 300h 200h

max 4a + 8b
a + 3b ≤ 450

a, b ∈ ℤ+

2a + b ≤ 300
a + b ≤ 200



4

waste management

2 types of nuclear waste A, B with 
different unit profit/processing time 
going through 3 processes I, II and III 
with limited availability 

objective: maximize the profit.  

I II III profit

A 1h 2h 1h 4k€

B 3h 1h 1h 8k€

available 450h 300h 200h

max 4a + 8b
a + 3b ≤ 450

a, b ≥ 0

2a + b ≤ 300
a + b ≤ 200

a, b ∈ ℤ
LP relaxation

LP solution:      a* + 3b* = 450, a* + b* = 200 ⇒ (a*, b*) = ( 150
2 , 250

2 )

active

active



Linear Programming cheat sheet

5

- MILP without integrality = LP-relaxation 

- linear inequality = halfspace 

- LP feasible set = polyhedron 

- convex optimization 

- if LP is feasible and bounded, at least one vertex is optimal 

- primal simplex algorithm: visit adjacent vertices as cost decreases 

- interior point method runs in polynomial time (but simplex often faster) 

- strong duality: min
x

{cx |Ax ≥ b, x ≥ 0} = max
u

{ub |uA ≤ c, u ≥ 0}

LP is easy



Input 1 company, 2 divisions, m products 
with availabilities dj, n retailers with 
demands aij in each product j. 
Output an assignment of the retailers to 
the divisions approaching a 50/50 
production split.

Market Split Problem

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 6, 2014

min
m∑

j=1
s+j + s−j

s.t.
n∑

i=1
ai j xi + s+j − s−j =

d j

2
j = 1..m

xi ∈ {0,1} i = 1..n

s+j ≥ 0, s−j ≥ 0 j = 1..m

xi is retailer i assigned to division 1 ?  
sj gap to the 50% split goal for product j6



Input     5 products, 40 retailers 

Output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . .  (hold the line please) . . . 

Int Opt = 1 

Time to the solution = 20 minutes 

Time of optimality proof > 1 hour 

MIPLIB markshare_5_0

7



MILP ≠ LP-relaxation

8
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MILP ≠ round LP-relaxation



general MILP is NP-hard

10

• small problems are easy
• some specific problems are easy



1||Cmax Scheduling 

Problem

Input n tasks, duration pi for each task 
i, one machine  
Output a minimal makespan schedule of 
the tasks on the machine without overlap 

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 6, 2014

1||Cmax

min sn+1

s.t. sn+1 ≥ s j +p j j = 1..n

s j − si ≥ M xi j + (pi −M) i , j = 1..n

xi j +x j i = 1 i , j = 1..n; i < j

s j ∈Z+ j = 1..n +1

xi j ∈ {0,1} i , j = 1..n

min
m∑

j=1
s+j + s−j

s.t.
n∑

i=1
ai j xi + s+j − s−j =

d j

2
j = 1..m

xi ∈ {0,1} i = 1..n

s+j ≥ 0, s−j ≥ 0 j = 1..m

= p1+…+pn

≥ 0

11xij does i precede j ? sj starting time of j



Input digraph (V,A), demand or supply 
bi at each node i, capacity hij and unit 
flow cost cij for each arc (i,j) 
Output a mimimum cost integer flow to 
satisfy the demand 

Capacitated Transhipment 

Problem

Mixed Integer Linear Programming
Course Note

OSE 2014: Optimization
sophie.demassey@mines-paristech.fr

October 6, 2014

f ≤ ax +M(1−x)

min
∑

(i , j )∈A
ci j xi j

s.t.
∑

j∈δ+(i )
xi j −

∑

j∈δ−(i )
xi j = bi i ∈V

xi j ≤ hi j (i , j ) ∈ A

xi j ∈Z+ (i , j ) ∈ A

1||Cmax

min sn+1

s.t. sn+1 ≥ s j +p j j = 1..n

s j − si ≥ M xi j + (pi −M) i , j = 1..n

xi j +x j i = 1 i , j = 1..n; i < j

s j ∈Z+ j = 1..n +1

xi j ∈ {0,1} i , j = 1..n

min
m∑

j=1
s+j + s−j

s.t.
n∑

i=1
ai j xi + s+j − s−j =

d j

2
j = 1..m

xi ∈ {0,1} i = 1..n

s+j ≥ 0, s−j ≥ 0 j = 1..m

≥ 0

xij flow on arc (i,j)12



LP = ILP sometimes

integral polyhedra 

= 

convex hull 

= 

ideal formulation

13



totally unimodular matrix

alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

criteria for good models

a good model

small-size: polynomial number of constraints/variables
flexible: about slight changes of the problem
easy LP: the LP relaxation is solved fast
structured: call for decomposition
effective LP: the LP relaxation value is close to the optimum

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

formulation strength

Let X ⊆ Zn a discrete set, e.g. the feasible solution set of an IP.

formulation strength

a formulation for X is any polyhedron P ⊆ Rn such that X = P ∩ Zn

conv(X) is the strongest formulation of X:
the optimum of a linear program over conv(X) is at an extreme point
the extreme points of conv(X) all lie in X
max{cx | x ∈ X} = max{cx | x ∈ conv(X)}
the second program can be solved in polynomial time

characterizing conv(X) is as hard as solving the IP

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

explicit convex hull

There are a number of problems for which conv(X) can easily be
characterized

assignment problem
spanning tree problem
matching problem

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

totally unimodular matrix

(P ) = max{ cx | Ax ≤ b, x ∈ Zn
+ }

basic feasible solutions of the LP relaxation (P̄ ) take the form:
x̄ = (x̄B , x̄N ) = (B−1b, 0) where B is a square submatrix of (A, Im)

Cramer’s rule: B−1 = B∗/det(B) where B∗ is the adjoint matrix
(made of products of terms of B)
Proposition: if (P ) has integral data (A, b) and if det(B) = ±1 then x̄
is integral

Definition
A matrix A is totally unimodular (TU) if every square submatrix has
determinant +1, −1 or 0.

Proposition

If A is TU and b is integral then any optimal solution of (P̄ ) is integral.

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

(theory)

14



totally unimodular matrix
alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

totally unimodular matrix

How to recognize TU ?

Sufficient condition
A matrix A is TU if

all the coefficients are +1, −1 or 0
each column contains at most 2 non-zero coefficient
there exists a partition (M1,M2) of the set M of rows such that
each column j containing two non zero coefficients satisfies∑

i∈M1
aij −

∑
i∈M2

aij = 0.

Proposition

A is TU ⇐⇒ At is TU ⇐⇒ (A, Im) is TU
where At is the transpose matrix, Im the identitiy matrix

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L3: modeling

alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

Quizz: easy problems

Capacitated Transhipment Problem

Given a digraph G = (V,A) with either (positive) demand or (negative)
supply bi at each node i ∈ V , arc capacities hij , and unit flow costs cij
for all (i, j) ∈ A. Find a feasible integer flow that satisfies all the
demands at minimum cost.

1 model as an IP
2 analyze this problem
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alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

Answer

Capacitated Transhipment Problem

min
∑

(i,j)∈A

cijxij

s.t.
∑

j∈δ+(i)

xij −
∑

j∈δ−(i)

xij = bi i ∈ V

xij ≤ hij (i, j) ∈ A

xij ∈ Z+ (i, j) ∈ A

xij = 1 is the flow value on arc (i, j) ∈ A

δ+(i) and δ−(i) are the sets of successors and predecessors of
i ∈ V , resp.
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alternative models
improving models

good IP models

better models ?
formulation strength
easy problems

Answer

Capacitated Transhipment Problem

The matrix is
(

M
IA

)
with M ∈ {0, 1,−1}V ×A the incidence matrix

of the graph and IA the identity matrix
each column xij in M has coefficients:

arij =






1 in row r = i

−1 in row r = j

0 in all other rows r

the rows of M can be partitioned as M1 = M and M2 = ∅ such
that:

∑
r∈M1

arij −
∑

r∈M2
arij = (1+ (−1))− 0 = 0 for all column xij

M is TU then the matrix of the IP is TU
if demands b and capacities h are all integral then any optimum
network flow is integral.
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(practice)
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Show that the Transhipment ILP is ideal 

Show that theScheduling ILP is NOT ideal 

Interlude

16



Output define K points as centers 
so as to minimize the sum of the 
distances between each point and 
its nearest center.

K-median clustering

17

K-mean clustering

Output partition the points into 
K sets so as to minimize the sum 
of the distances between each 
point and the mean of points in 
its cluster.

Input n data points , a 
number K of clusters. Euclidean 
distance.

mj ∈ ℝp

project:  
power generation
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a basic power generation problem

Output a number of units to commit and their production level to meet 
both the demand and the reserve on each period so as to minimize the 
operation costs.

Input electric power demand  for each time period  of 
 hours,  power generation units of each type  with power output 

range . A reserve factor . A base hourly cost  to operate a 
unit at its min level + a cost  per extra MWh.

Dp p ∈ {0,…, P − 1}
Δp Nt t ∈ T

[Lt, Lt] F Cb
t

Cr
t

- no need to know the activity of each individual unit 

- be careful with equations in power or in energy 

- choose units to enforce the homogeneity of  the values 
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Input electric power demand  (MW) for each time period  
of  hours,  power generation units of each type  with power 
output range  (MW). A reserve factor . A base hourly cost 

 (eur/h/unit) to operate a unit at its min level + a cost  (eur/
MWh) per extra MWh.

Dp p ∈ {0,…, P − 1}
Δp Nt t ∈ T

[Lt, Lt] F ∈ [0,1]
Cb

t Cr
t

xtp number of committed units of type t on period p 
ltp extra load (MW) of all units of type t on period p

min ∑
t,p

(ΔpCb
t xtp + ΔpCr

t ltp)

∑
t

Ltxtp ≥ (1 + F) * Dp ∀p

0 ≤ ltp ≤ (Lt − Lt)xtp ∀t, p

xtp ∈ ℤ ∀t, p
0 ≤ xtp ≤ Nt ∀t, p

∑
t

(Ltxtp + ltp) ≥ Dp ∀p
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startup costs
Input the number  of active units at time 0, a positive startup cost 
 to turn a unit on.

At
Cs

t

ytp number of units of type t starting on period p 

min … + ∑
t,p

Cs
t ytp

yt0 ≥ xt0 − At ∀t

ytp ∈ ℤ+ ∀t, p

ytp ≥ xtp − xtp−1 ∀t, p ≠ 0

 in any feasible solution andytp ≥ max(0, xtp − xtp−1)
  in any optimal solution (prove it)ytp ≤ max(0, xtp − xtp−1)
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hydro power generation 
Input hydro units  with fixed power output  (MW), hourly 
reservoir depth reduction  (m/h) and hourly cost  (eur/h) when on, 
and with startup cost  (eur);  the commitment status (true/false) 
of the unit before time 0. At end, the unique reservoir must be 
replenished to its initial level; pumping electric consumption  (MWh/
m) for 1 meter depth increase.  

h ∈ H Lh
Rh Cb

h
Cs

h Ah

E

xhp hydro unit h committed on period p 
yhp hydro unit h started on period p 
up reservoir depth increase (m/h) by pumping on period p 
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hydro power generation 

min… + ∑
h,p

(ΔpCb
h xhp + Cs

hyhp)

xhp, yhp ∈ {0,1} ∀h, p

∑
p

∑
h

RhΔpxhp = ∑
p

Δpup

∑
t

Ltxtp + ∑
h

Lh ≥ (1 + F) * Dp ∀p

up ∈ ℝ+ ∀p

∑
t

(Ltxtp + ltp) + ∑
h

Lhxhp ≥ Dp + Eup ∀p

xh(−1) = Ah

yhp ≥ xhp − xhp−1 ∀h, p
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Physical limits of the units: 
minimum up/down times and  
maximum ramp up/down rates

Input (noncyclic) 
up/down times: minimum time  (h) unit  may remain on or off; 
time  (h) the th unit of type  has been on/off before period 0. 
ramp rates: maximum power increase/decrease  (MW) between two 
consecutive periods; maximum power  (MW) when turned on; maximum power 
 (MW) before turned off; load  (MW) for th unit of type  before 

period 0. 
Input (cyclic) 
the status before period 0 ( ) are duplicated from period P-1.

Δ+
t , Δ−

t t ∈ T
Δ+

0it, Δ−
0it i t ∈ T

L+
t , L−

t
LS

t
LE

t L0it i t ∈ T

Δ+
0it, Δ−

0it, L0it

commitment must be monitored for units individually



24

minimum uptime

Let  . 

Show that an unit of type  cannot been turned on more than once during  .  

Show that if an unit of type  is off at time  then it has not been turned on at any time 

 .  

  

Reformulate these assertions as a linear relation between the binary variables modelling the unit 

status and status change at appropriate periods.

P+
t (p) = {0 ≤ p′ ≤ p |

p−1

∑
k=p′ 

Δk < Δ+
t }

t P+
t (p)

t p
p′ ∈ P+

t (p)
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minimum uptime (noncyclic case)

If unit  of type  has been on for exactly  hours before time 0, what can you say about 

its status and status change  at any period in 

? 

Fix binary variables modelling the status and status change  of a unit at given periods according to 

this assertion.

i t Δ+
0it > 0

P+
it = {p ≥ 0 |

p−1

∑
k=0

Δk < Δ+
t − Δ+

0it}
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a practical view
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1how to model ?

2how difficult ?

3how to solve ?
2



Complete enumeration

3

= 2p
 LPs to solve

MILP with p binaries

x1=0 x1=1

x2=0 x2=1 x2=0 x2=1

x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0 x3=1

x4=0 x4=1

0     0     0     0     0     0     0     0     1     1     1     1     1     1     1     1
0     0     0     0     1     1     1     1     0     0     0     0     1     1     1     1
0     0     1     1     0     0     1     1     0     0     1     1     0     0     1     1
0     1     0     1     0     1     0     1     0     1     0     1     0     1     0     1



Combinatorial explosion

4

2p p100p

p



Combinatorial explosion

4

2p

p

100p
p

age of the universe ≈ 290
 milliseconds
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Two options

5

compute 

an ideal formulation

evaluate partial solutions 

 progressively

X

X
X



4
3
2
1Cut Generation             compute an ideal formulation

Branch&Bound    evaluate partial solutions progressively

modern Branch&Cut   mix up+presolve+heuristics

decomposition methods      (Branch&Price, Lagrangian relaxation, Benders)
6



Cutting Plane Algorithm

7



Cut valid inequality that separates a relaxed LP solution 

Farkas Lemma cuts are linear combinations of constraints 
8



cutting plane algorithm

1. solve the LP relaxation of (P), get x 

2. if x is integral STOP: feasible then optimal 
for (P) 

3. find cuts C for (P,x) from template T  

4. add constraints C to (P) then 1.

9

separation subproblem



templates

general-purpose

structure-based

problem-specific

mixed integer rounding, split, Chvátal-Gomory

clique, cover, flow cover, zero half

subtour elimination (TSP), odd-set (matching)

10



ex1Chvátal-Gomory cuts

11

(P) : max{cx | Ax ≤ b, x ∈ ℤ+}

variants in the choice of , ex: Gomory or MIR cuts u

For any  the following inequalities are valid: 

1. surrogate:  

2. round off:  

3. Chvátal-Gomory: 

u ∈ ℝm
+

∑
j

∑
i

uiaijxj ≤ ∑
i

uibi

∑
i

⌊∑
j

uiaij⌋xj ≤ ∑
i

uibi

∑
i

⌊∑
j

uiaij⌋xj ≤ ⌊∑
i

uibi⌋

(u ≥ 0)

(x ≥ 0)

(⌊uA⌋x ∈ ℤ)



ex2Cover cuts

easy problems

cutting-plane methods

definitions

examples

Exercices

Cover inequalities

Find a non-dominated cover inequality

P
i⌅K yi ⌅ |K|� 1 for:

S = {y ⌃ {0, 1}7|11y1 + 6y2 + 6y3 + 5y4 + 5y5 + 4y6 + y7 ⌅ 19}

GUB inequalities

Find a non-dominated GUB inequality

P
i⌅C yi ⌅ |C|� 1 for:

S = { y ⌃ {0, 1}8

s.t. 2y1 + y2 + 5y3 + 2y4 + 3y5 + 6y6 + 4y7 + y8 ⌅ 9

y1 + y4 + y6 ⌅ 1

y5 + y8 ⌅ 1

y2 + y7 ⌅ 1 }

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L5: solving/cuts

easy problems

cutting-plane methods

definitions

examples

Answer: Cover inequalities

Cover inequalities

S = {y ⌃ {0, 1}7|11y1 + 6y2 + 6y3 + 5y4 + 5y5 + 4y6 + y7 ⌅ 19}

(y3, y4, y5, y6) is a minimal cover for

11y1 + 6y2 + 6y3 + 5y4 + 5y5 + 4y6 + y7 ⌅ 19 as 6 + 5+ 5+ 4 > 19 then

y3 + y4 + y5 + y6 ⌅ 3 is a cover inequality

we can derive a stronger valid inequality

y1 + y2 + y3 + y4 + y5 + y6 ⌅ 3 by noting that y1, y2 has greater

coefficients than any variable in the cover

note furthermore that (y1, yi, yj) is a cover �i ⌥= j ⌃ {2, 3, 4, 5, 6}
then 2y1 + y2 + y3 + y4 + y5 + y6 ⌅ 3 is also valid

The procedure to get this last equality is called lifting
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easy problems

cutting-plane methods

definitions

examples

Answer: GUB inequalities

GUB inequalities

2y1 + y2 + 5y3 + 2y4 + 3y5 + 6y6 + 4y7 + y8 ⌅ 9

y1 + y4 + y6 ⌅ 1

y5 + y8 ⌅ 1

y2 + y7 ⌅ 1

(y1, y6, y7) is a minimal cover having 2 variables in the first clique

inequality, then the associated cover inequality y1 + y6 + y7 ⌅ 2 is

redundant with y1 + y6 ⌅ y1 + y4 + y6 ⌅ 1

y1 + y5 + y7 ⌅ 2 is a GUB inequality, i.e. the cover has at most one

variable in each clique constraint

by lifting, we can strengthen it: y1 + y5 + y7 + y3 + y6 ⌅ 2

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L5: solving/cuts

easy problems

cutting-plane methods

definitions

examples

Separation with templates

problem-specific cuts are usually derived according to:

the template paradigm

1 describe one or more templates of linear inequalities that are

satisfied by all the points of S

2 for each template, design an efficient separation algorithm that,

given an x̄, attempts to find a cut that matches the template.

The separation algorithm may be:

exact: finds a cut that separates z̄ from S and matches the

template whenever one exists

heuristic: sometimes fails to find such a cut even though one exists.
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12

lifting

separation:   solve knapsack min{∑
j

(1 − yj)xj | ∑ ajxj ≥ b + ϵ, x ∈ {0,1}n}
get coefficients  of the cover inequality x* ∑ x*j yj ≤ ∑ x*j − 1
if  then it is a cut (not satisfied by current LP solution )∑ (1 − yj)x*j < 1 ȳ

to go further: Kaparis & Letchford 2010 
Separation algorithms for 0-1 knapsack polytopes 



ex3Subtour for TSP

13



ex3Subtour for TSP

Mixed Integer Linear Programming

Course Note

OSE 2014: Optimization

sophie.demassey@mines-paristech.fr

October 7, 2014

min

X

e2E
ce xe

s.t.

X

e2E |i2e
xe = 2 i 2V

X

±(Q)

xe ∏ 2 ;(Q (V

xe 2 {0,1} e 2 E

13

2n constraints ! 



ex3Subtour for TSP

14

separation: solve min s-t cut in  for some fixed s and for each  to 

find a cutset   of capacity < 2 or prove that none exists 

(V, ⃗E , x̄) t ∈ V∖{s}
δ(Q)



limits depending on the templates

- the algorithm may stop prematurely 

- the algorithm may not converge 

- the algorithm may converge slowly 

- the separation procedure may be NP-hard 

- the LP relaxation grows 

- the LP relaxation structure changes 

15



LP-Branch and Bound

16



Search tree 
divide/evaluate/prune

17

oracle(S)=FALSE if 

no solution in S 

(false-positive allowed)



oracle(S) = FALSE if either:  
-the LP relaxation is unfeasible on S     
-the relaxed LP solution x is not better than 

the best integer solution found so far x* 
- x is integer (then update x*)

18

LP-based branch and bound
1. evaluate by solving the LP relaxation and compare bounds 

2. divide with variable bounding (hyperplanes)



19



branching

node selection

variable selection

which order to visit nodes ?

how to separate nodes ?

constraint branching
versus variable branching

20



node selection

Best Bound First Search explore less nodes, manages larger trees 

Depth First Search sensible to bad decisions at or near the root 

DFS (up to n solutions) + BFS (to prove optimality)
21



variable selection

most fractional easy to implement but not better than random 

strong branching best improvement among all candidates (impractical) 

pseudocost branching record previous branching success for each var (inaccurate at root) 

reliability branching pseudocosts initialised with strong branching
22



constraint branching 

from the LP relaxation to an IP solution

branch-and-bound

LP-based branch-and-bound

definition

branching strategies

branching strategies

GOAL: accelerate the search

MEAN: try to minimize the number of nodes to evaluate

3 combined heuristics

1 choose the way a subspace is divided

2 choose the element of division

3 choose the subspace to divide

in order to keep the evaluation easy
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from the LP relaxation to an IP solution

branch-and-bound

LP-based branch-and-bound

definition

branching strategies

how to divide ?

the division strategy must be compatible with the bounding strategy:

exclude the current relaxed solution

exclude no feasible solution

not overload the relaxed model

not modify its structure
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from the LP relaxation to an IP solution

branch-and-bound

LP-based branch-and-bound

definition

branching strategies

branching on variables

example: variable dichotomy

let x̄ the LP solution, x̄ ⌃⇧ Zn

choose a fractional variable x̄i ⌃⇧ Z
divide in two by shrinking the bounds of the variable in the two

child LPs: xi ⇤ ↵x̄i� (left branch) and xi ⌅ �x̄i� (right branch)

variable dichotomy is compatible to any LP relaxation

default branching strategy in most solvers

other variable branching: fix variable value in each branch

xi = v1i ⌦ xi = v2i ⌦ xi = v3i ⌦ · · · ⌦ xi = vpii
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from the LP relaxation to an IP solution

branch-and-bound

LP-based branch-and-bound

definition

branching strategies

branching on constraints

example: GUB dichotomy

if (P ) contains a GUB constraint

�
C xi = 1, x ⇧ {0, 1}n

choose C⇤ ⇥ C s.t. 0 <
�

C0 x̄i < 1

create two child nodes by setting either

�
C0 xi = 0 or

�
C0 xi = 1

enforced by fixing the variable values

leads to more balanced search trees

special case when C is logically ordered: SOS1 branching

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L6: solving/B&B

from the LP relaxation to an IP solution
branch-and-bound

LP-based branch-and-bound

definition
branching strategies

branching on constraints

SOS1 branching in a facility location problem

choose a warehouse depending on its size/cost:

COST = 100x1 + 180x2 + 320x3 + 450x4 + 600x5

SIZE = 10x1 + 20x2 + 40x3 + 60x4 + 80x5

(SOS1) : x1 + x2 + x3 + x4 + x5 = 1

let x̄1 = 0.35 and x̄5 = 0.65 in the LP solution then SIZE= 55.5

choose C� = {1, 2, 3} in order to model SIZE� 40 or SIZE⇥ 60

the branching point of the SOS C is given by:

argmax{aj | aj <
�

i⇥C

aix̄i, j ⇤ C}.
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from the LP relaxation to an IP solution

branch-and-bound

LP-based branch-and-bound

definition

branching strategies

division strategies

examples

variable dichotomy xi ⇧ [0, a] ⌦ xi ⇧ [a+ 1, b]

branching on semi-continuous variables xi ⇧ {0} � [a, b]

branching on domain values xi = 0 ⌦ xi = 1 ⌦ · · · ⌦ xi = u

GUB branching

SOS1 branching

SOS2 branching x1 + x2 + x3 + x4 + x5 = 1, if x̄2 = x̄4 = 0.5
set either x4 = x5 = 0 (enforcing x2 > 0) or x1 = x2 = 0 (enforcing

x4 > 0)

branching on connectivity constraints in TSP, if

�
e⌅�(U) x̄e = 2.5 set

either

�
e⌅�(U) xe = 2 or

�
e⌅�(U) xe ⌅ 4 (enforcing

�
e⌅�(U) x̄e = 2k)

... other problem specific strategies
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from the LP relaxation to an IP solution

branch-and-bound

LP-based branch-and-bound

definition

branching strategies

branching strategies

GOAL: accelerate the search

MEAN: try to minimize the number of nodes to evaluate

3 combined heuristics

1 choose the way a subspace is divided

2 choose the element (variable/constraint) of division

3 choose the subspace to divide

in order to keep the tree size small

Sophie Demassey, TASC, EMN-INRIA/LINA Université de Nantes / M2 ORO / Advanced Integer Programming / L6: solving/B&B

from the LP relaxation to an IP solution

branch-and-bound

LP-based branch-and-bound

definition

branching strategies

variable choice rule

choosing the fractional variable in variable dichotomy ?

choose the most infeasible variable: with the most fractional value

(closest to 1/2)

or choose the most suboptimal variable: that causes the LP

optimum to deteriorate quickly

the first strategy aims at fixing the hesitating variables: often as

good as a random choice

the second strategy is the most usual in solvers

helps in keeping the tree size small by augmenting pruning (when

z̄ < z⇥ + 1)

but it can be too expensive to compute the optimum changes for

each fractional variable at each node
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bounding: the dual simplex algorithm

24

• primal-dual problem pair:  

• primal-dual basic solutions:  with  and , 

• primal basic feasible solutions are the extreme points of polyhedron  

• if both are feasible (  and ) then both are optimal ( ) 

• primal simplex algorithm: iterate over bases, maintain primal feasibility, stop when achieving dual feasibility 

• dual simplex algorithm: iterate over bases, maintain dual feasibility, stop when achieving primal feasibility 

• branching  updating   the dual basic solution remains feasible 

• we can warm-start the dual simplex algorithm to solve the LP-relaxation at a search node with the dual basic 

solution of the parent node 

• great impact on the running time of the LP-B&B algorithm  

• convex MINLP: NLP-B&B algorithm does usually not perform well (OA-based cutting-plane algorithms are usually 

better) mostly because no such warm-start algorithm exists for NLP

min
x

{c⊤x |Ax = b, x ≥ 0} = max
u

{u⊤b |A⊤u ≤ c}

x = (xB, xN) xN = 0, xB = A−1
B b u⊤ = c⊤

B A−1
B

P = {x ≥ 0 | Ax ≥ b}
xB ≥ 0 c⊤ − u⊤A ≥ 0 uTb = c⊤

B xB = cx

⟹ b ⟹



Output define K points as centers 
so as to minimize the sum of the 
distances between each point and 
its nearest center.

K-median clustering

62

K-mean clustering

Output partition the points into 
K sets so as to minimize the sum 
of the distances between each 
point and the mean of points in 
its cluster.

Input n data points , a 
number K of clusters. Euclidean 
distance.

mj ∈ ℝp

project:  

power generation
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Physical limits of the units: 

minimum up/down times and  

maximum ramp up/down rates

Input (noncyclic) 
up/down times: minimum time  unit  may remain on or off; time 

 the th unit of type  has been on/off before period 0. 
ramp rates: maximum power increase/decrease  between two 
consecutive periods; maximum power  when turned on; maximum power  
before turned off; load  for th unit of type  before period 0. 
Input (cyclic) 
the status before period 0 ( ) are duplicated from period P-1.

Δ+
t , Δ−

t t ∈ T
Δ+

0it, Δ−
0it i t ∈ T

L+
t , L−

t
LS

t LE
t

L0it i t ∈ T

Δ+
0it, Δ−

0it, L0it

commitment must be monitored for units individually
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minimum uptime

Let  . 

Show that an unit of type  cannot been turned on more than once during  .  

Show that if an unit of type  is off at time  then it has not been turned on at any time 

 .  

  

Reformulate these assertions as a linear relation between the binary variables modelling the unit 

status and status change at appropriate periods.

P+
t (p) = {0 ≤ p′ ≤ p |

p−1

∑
k=p′ 

Δk < Δ+
t }

t P+
t (p)

t p
p′ ∈ P+

t (p)
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minimum uptime (noncyclic case)

If unit  of type  has been on for exactly  hours before time 0, what can you say about 

its status and status change  at any period in 

? 

Fix binary variables modelling the status and status change  of a unit at given periods according to 

this assertion.

i t Δ+
0it > 0

P+
it = {p ≥ 0 |

p−1

∑
k=0

Δk < Δ+
t − Δ+

0it}
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maximum ramp

If unit  of type  starts at p ( ) then  

Otherwise either unit i is on at p-1 and on at p and  

                            or unit i is on at p-1 and off at p and  

                            or unit i is off at p-1 and off at p and  

i t yithp = 1 litp − litp−1 ≤ LS
it

litp − litp−1 ≤ L+
it

litp − litp−1 < 0
litp − litp−1 = 0



the MILP way
a practical view
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ENCORE EN GRÈVE 



modern solvers
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Branch & Cut

Simplex
var branching

Heuristics
Parallelism

Preprocessing
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Slide from Martin Grötschel Co@W Berlin 201528



© 2013 IBM Corporation

Component Impact CPLEX 12.5 Summary

Benchmarking setup

• 1769 models
• 12 core Intel Xenon 2.66 GHz
• Unbiased: At least one of all the

test runs took at least 10sec

99% 82% 91% 26%93%91% 46%83% 65%% affected

12 29
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From Andrea Lodi's MIP course (Wien 2012)

From Robert Bixby (1000x MIP Tricks 2012)



CPLEX 20.1 GUROBI 7.5 - 10.0

31



Preprocessingreduce size 
remove redundancies     x+y≤3, binaries  
substitute variables       x+y-z=0 
fix variables by duality   cj≥0, Aj≥0 ⇒ x=xmin 

fix variables by probing  x=1 infeas ⇒ x=0 

strengthen LP relaxation 

     adjust bounds   2x+y≤1, binaries ⇒ x=0 

       lift coefficients   2x-y≤1, binaries ⇒ x-y≤1   

identify/exploit properties 
     detect implied integer 3x+y=7, x int ⇒ y int 

         build the conflict graph  
         detect disconnected components 
         remove symmetries

32



Input 5 products, 40 retailers 
Output . . . . . . . . . . . . . . . 
. . . (hold the line please) . . . .  

Int Opt = 1 
Solution time = 20 minutes 
Proof time = > 1 hour 

MIPLIB markshare_5_0
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Input 5 products, 40 retailers 
Output . . . . . . . . . . . . . . . 
. . . (hold the line please) . . . .  

Int Opt = 1 
Solution time = 20 minutes 
Proof time = > 1 hour 

MIPLIB markshare_5_0

x22 1
x23 1
x26 1
x27 1
x28 1
x34 1
x35 1
x38 1
x39 1
[sofdem:~/Documents/Code/gurobi]$ gurobi.sh mymip.py markshare_5_0.mps.gz
Optimize a model with 5 rows, 45 columns and 203 nonzeros
Found heuristic solution: objective 5335
Presolve time: 0.00s
Presolved: 5 rows, 45 columns, 203 nonzeros
Variable types: 0 continuous, 45 integer (40 binary)

Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0    0.00000    0    5 5335.00000    0.00000   100%     -    0s
H    0     0                     320.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
H    0     0                     239.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    5  239.00000    0.00000   100%     -    0s
*   36     0              29      96.0000000    0.00000   100%   2.7    0s
*   99    32              34      58.0000000    0.00000   100%   2.1    0s
H  506   214                      53.0000000    0.00000   100%   1.9    0s
H30682   442                       1.0000000    1.00000  0.00%   2.1    0s

Cutting planes:
  Cover: 26

Explored 30682 nodes (65348 simplex iterations) in 0.70 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.000000000000e+00, best bound 1.000000000000e+00, gap 0.0%
Optimal objective: 1
Matching parameters: [u'Cutoff', u'IterationLimit', u'NodeLimit', u'SolutionLimit', u'Time
Limit', u'FeasibilityTol', u'IntFeasTol', u'MarkowitzTol', u'MIPGap', u'MIPGapAbs', u'Opti
malityTol', u'PSDTol', u'Method', u'PerturbValue', u'ObjScale', u'ScaleFlag', u'SimplexPri
cing', u'Quad', u'NormAdjust', u'SiftMethod', u'Sifting', u'BarIterLimit', u'BarConvTol', 
u'BarCorrectors', u'BarHomogeneous', u'BarOrder', u'BarQCPConvTol', u'Crossover', u'Crosso
verBasis', u'BranchDir', u'Disconnected', u'Heuristics', u'MinRelNodes', u'MIPFocus', u'No
defileStart', u'NodefileDir', u'NodeMethod', u'NoRelHeuristic', u'PumpPasses', u'RINS', u'
SolutionNumber', u'SubMIPNodes', u'Symmetry', u'VarBranch', u'ZeroObjNodes', u'Cuts', u'Cu
tPasses', u'CliqueCuts', u'CoverCuts', u'CutAggPasses', u'FlowCoverCuts', u'FlowPathCuts',
 u'GomoryPasses', u'GUBCoverCuts', u'ImpliedCuts', u'MIPSepCuts', u'MIRCuts', u'NetworkCut
s', u'SubMIPCuts', u'ZeroHalfCuts', u'ModKCuts', u'ServerPool', u'ServerPassword', u'Aggre
gate', u'AggFill', u'PreDual', u'ConcurrentMIP', u'ConcurrentMIPJobs', u'DisplayInterval',
 u'DualReductions', u'IISMethod', u'InfUnbdInfo', u'LogFile', u'LogToConsole', u'MIQCPMeth
od', u'NumericFocus', u'QCPDual', u'PreCrush', u'PreDepRow', u'PreMIQPMethod', u'PreQLinea
rize', u'PrePasses', u'Presolve', u'PreSOS1BigM', u'PreSOS2BigM', u'PreSparsify', u'Result
File', u'Seed', u'Threads', u'NonBlocking', u'LazyConstraints', u'FeasRelaxBigM', u'Improv
eStartTime', u'ImproveStartGap', u'ImproveStartNodes', u'TuneTimeLimit', u'TuneResults', u
'TuneTrials', u'TuneOutput', u'TuneJobs', u'Dummy', u'OutputFlag']
None

Solution 0 has objective 1
Solution 1 has objective 53
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Primal Heuristics

accelerate the search a little 

appeal to the practitioner a lot

rounding LP solution 
diving at some nodes 

local search in the incumbent neighbourhood 
e.g.: feasibility pump, RINS 
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limits

- highly heuristic (branching decisions, cut generation)  

- floating-point errors  and optimality tolerance (0.01%) 

- generic features 

- less effective on general integers (ex: scheduling) 

- hard to model (and solve) non-linear structures 

- NP-hard 

35



how to tune 

modern solvers 
play with Gurobi
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use as a heuristic

set a time limit  
MIPFocus=1 
ImproveStartGap=0.1

x22 1
x23 1
x26 1
x27 1
x28 1
x34 1
x35 1
x38 1
x39 1
[sofdem:~/Documents/Code/gurobi]$ gurobi.sh mymip.py markshare_5_0.mps.gz
Optimize a model with 5 rows, 45 columns and 203 nonzeros
Found heuristic solution: objective 5335
Presolve time: 0.00s
Presolved: 5 rows, 45 columns, 203 nonzeros
Variable types: 0 continuous, 45 integer (40 binary)

Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0    0.00000    0    5 5335.00000    0.00000   100%     -    0s
H    0     0                     320.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
H    0     0                     239.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    5  239.00000    0.00000   100%     -    0s
*   36     0              29      96.0000000    0.00000   100%   2.7    0s
*   99    32              34      58.0000000    0.00000   100%   2.1    0s
H  506   214                      53.0000000    0.00000   100%   1.9    0s
H30682   442                       1.0000000    1.00000  0.00%   2.1    0s

Cutting planes:
  Cover: 26

Explored 30682 nodes (65348 simplex iterations) in 0.70 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.000000000000e+00, best bound 1.000000000000e+00, gap 0.0%
Optimal objective: 1
Matching parameters: [u'Cutoff', u'IterationLimit', u'NodeLimit', u'SolutionLimit', u'Time
Limit', u'FeasibilityTol', u'IntFeasTol', u'MarkowitzTol', u'MIPGap', u'MIPGapAbs', u'Opti
malityTol', u'PSDTol', u'Method', u'PerturbValue', u'ObjScale', u'ScaleFlag', u'SimplexPri
cing', u'Quad', u'NormAdjust', u'SiftMethod', u'Sifting', u'BarIterLimit', u'BarConvTol', 
u'BarCorrectors', u'BarHomogeneous', u'BarOrder', u'BarQCPConvTol', u'Crossover', u'Crosso
verBasis', u'BranchDir', u'Disconnected', u'Heuristics', u'MinRelNodes', u'MIPFocus', u'No
defileStart', u'NodefileDir', u'NodeMethod', u'NoRelHeuristic', u'PumpPasses', u'RINS', u'
SolutionNumber', u'SubMIPNodes', u'Symmetry', u'VarBranch', u'ZeroObjNodes', u'Cuts', u'Cu
tPasses', u'CliqueCuts', u'CoverCuts', u'CutAggPasses', u'FlowCoverCuts', u'FlowPathCuts',
 u'GomoryPasses', u'GUBCoverCuts', u'ImpliedCuts', u'MIPSepCuts', u'MIRCuts', u'NetworkCut
s', u'SubMIPCuts', u'ZeroHalfCuts', u'ModKCuts', u'ServerPool', u'ServerPassword', u'Aggre
gate', u'AggFill', u'PreDual', u'ConcurrentMIP', u'ConcurrentMIPJobs', u'DisplayInterval',
 u'DualReductions', u'IISMethod', u'InfUnbdInfo', u'LogFile', u'LogToConsole', u'MIQCPMeth
od', u'NumericFocus', u'QCPDual', u'PreCrush', u'PreDepRow', u'PreMIQPMethod', u'PreQLinea
rize', u'PrePasses', u'Presolve', u'PreSOS1BigM', u'PreSOS2BigM', u'PreSparsify', u'Result
File', u'Seed', u'Threads', u'NonBlocking', u'LazyConstraints', u'FeasRelaxBigM', u'Improv
eStartTime', u'ImproveStartGap', u'ImproveStartNodes', u'TuneTimeLimit', u'TuneResults', u
'TuneTrials', u'TuneOutput', u'TuneJobs', u'Dummy', u'OutputFlag']
None

Solution 0 has objective 1
Solution 1 has objective 53
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change the LP solver

if nbIteration(node) ≥  nbIteration(root)/2 
NodeMethod=2

x22 1
x23 1
x26 1
x27 1
x28 1
x34 1
x35 1
x38 1
x39 1
[sofdem:~/Documents/Code/gurobi]$ gurobi.sh mymip.py markshare_5_0.mps.gz
Optimize a model with 5 rows, 45 columns and 203 nonzeros
Found heuristic solution: objective 5335
Presolve time: 0.00s
Presolved: 5 rows, 45 columns, 203 nonzeros
Variable types: 0 continuous, 45 integer (40 binary)

Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0    0.00000    0    5 5335.00000    0.00000   100%     -    0s
H    0     0                     320.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
H    0     0                     239.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    5  239.00000    0.00000   100%     -    0s
*   36     0              29      96.0000000    0.00000   100%   2.7    0s
*   99    32              34      58.0000000    0.00000   100%   2.1    0s
H  506   214                      53.0000000    0.00000   100%   1.9    0s
H30682   442                       1.0000000    1.00000  0.00%   2.1    0s

Cutting planes:
  Cover: 26

Explored 30682 nodes (65348 simplex iterations) in 0.70 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.000000000000e+00, best bound 1.000000000000e+00, gap 0.0%
Optimal objective: 1
Matching parameters: [u'Cutoff', u'IterationLimit', u'NodeLimit', u'SolutionLimit', u'Time
Limit', u'FeasibilityTol', u'IntFeasTol', u'MarkowitzTol', u'MIPGap', u'MIPGapAbs', u'Opti
malityTol', u'PSDTol', u'Method', u'PerturbValue', u'ObjScale', u'ScaleFlag', u'SimplexPri
cing', u'Quad', u'NormAdjust', u'SiftMethod', u'Sifting', u'BarIterLimit', u'BarConvTol', 
u'BarCorrectors', u'BarHomogeneous', u'BarOrder', u'BarQCPConvTol', u'Crossover', u'Crosso
verBasis', u'BranchDir', u'Disconnected', u'Heuristics', u'MinRelNodes', u'MIPFocus', u'No
defileStart', u'NodefileDir', u'NodeMethod', u'NoRelHeuristic', u'PumpPasses', u'RINS', u'
SolutionNumber', u'SubMIPNodes', u'Symmetry', u'VarBranch', u'ZeroObjNodes', u'Cuts', u'Cu
tPasses', u'CliqueCuts', u'CoverCuts', u'CutAggPasses', u'FlowCoverCuts', u'FlowPathCuts',
 u'GomoryPasses', u'GUBCoverCuts', u'ImpliedCuts', u'MIPSepCuts', u'MIRCuts', u'NetworkCut
s', u'SubMIPCuts', u'ZeroHalfCuts', u'ModKCuts', u'ServerPool', u'ServerPassword', u'Aggre
gate', u'AggFill', u'PreDual', u'ConcurrentMIP', u'ConcurrentMIPJobs', u'DisplayInterval',
 u'DualReductions', u'IISMethod', u'InfUnbdInfo', u'LogFile', u'LogToConsole', u'MIQCPMeth
od', u'NumericFocus', u'QCPDual', u'PreCrush', u'PreDepRow', u'PreMIQPMethod', u'PreQLinea
rize', u'PrePasses', u'Presolve', u'PreSOS1BigM', u'PreSOS2BigM', u'PreSparsify', u'Result
File', u'Seed', u'Threads', u'NonBlocking', u'LazyConstraints', u'FeasRelaxBigM', u'Improv
eStartTime', u'ImproveStartGap', u'ImproveStartNodes', u'TuneTimeLimit', u'TuneResults', u
'TuneTrials', u'TuneOutput', u'TuneJobs', u'Dummy', u'OutputFlag']
None

Solution 0 has objective 1
Solution 1 has objective 53

38



init with a feasible solution

if built-in heuristics fail 
PumpPasses,MinRelNodes,ZeroObjNodes 
model.read(‘initSol.mst’) 
model.cbSetSolution(vars, newSol)

x22 1
x23 1
x26 1
x27 1
x28 1
x34 1
x35 1
x38 1
x39 1
[sofdem:~/Documents/Code/gurobi]$ gurobi.sh mymip.py markshare_5_0.mps.gz
Optimize a model with 5 rows, 45 columns and 203 nonzeros
Found heuristic solution: objective 5335
Presolve time: 0.00s
Presolved: 5 rows, 45 columns, 203 nonzeros
Variable types: 0 continuous, 45 integer (40 binary)

Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0    0.00000    0    5 5335.00000    0.00000   100%     -    0s
H    0     0                     320.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
H    0     0                     239.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    5  239.00000    0.00000   100%     -    0s
*   36     0              29      96.0000000    0.00000   100%   2.7    0s
*   99    32              34      58.0000000    0.00000   100%   2.1    0s
H  506   214                      53.0000000    0.00000   100%   1.9    0s
H30682   442                       1.0000000    1.00000  0.00%   2.1    0s

Cutting planes:
  Cover: 26

Explored 30682 nodes (65348 simplex iterations) in 0.70 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.000000000000e+00, best bound 1.000000000000e+00, gap 0.0%
Optimal objective: 1
Matching parameters: [u'Cutoff', u'IterationLimit', u'NodeLimit', u'SolutionLimit', u'Time
Limit', u'FeasibilityTol', u'IntFeasTol', u'MarkowitzTol', u'MIPGap', u'MIPGapAbs', u'Opti
malityTol', u'PSDTol', u'Method', u'PerturbValue', u'ObjScale', u'ScaleFlag', u'SimplexPri
cing', u'Quad', u'NormAdjust', u'SiftMethod', u'Sifting', u'BarIterLimit', u'BarConvTol', 
u'BarCorrectors', u'BarHomogeneous', u'BarOrder', u'BarQCPConvTol', u'Crossover', u'Crosso
verBasis', u'BranchDir', u'Disconnected', u'Heuristics', u'MinRelNodes', u'MIPFocus', u'No
defileStart', u'NodefileDir', u'NodeMethod', u'NoRelHeuristic', u'PumpPasses', u'RINS', u'
SolutionNumber', u'SubMIPNodes', u'Symmetry', u'VarBranch', u'ZeroObjNodes', u'Cuts', u'Cu
tPasses', u'CliqueCuts', u'CoverCuts', u'CutAggPasses', u'FlowCoverCuts', u'FlowPathCuts',
 u'GomoryPasses', u'GUBCoverCuts', u'ImpliedCuts', u'MIPSepCuts', u'MIRCuts', u'NetworkCut
s', u'SubMIPCuts', u'ZeroHalfCuts', u'ModKCuts', u'ServerPool', u'ServerPassword', u'Aggre
gate', u'AggFill', u'PreDual', u'ConcurrentMIP', u'ConcurrentMIPJobs', u'DisplayInterval',
 u'DualReductions', u'IISMethod', u'InfUnbdInfo', u'LogFile', u'LogToConsole', u'MIQCPMeth
od', u'NumericFocus', u'QCPDual', u'PreCrush', u'PreDepRow', u'PreMIQPMethod', u'PreQLinea
rize', u'PrePasses', u'Presolve', u'PreSOS1BigM', u'PreSOS2BigM', u'PreSparsify', u'Result
File', u'Seed', u'Threads', u'NonBlocking', u'LazyConstraints', u'FeasRelaxBigM', u'Improv
eStartTime', u'ImproveStartGap', u'ImproveStartNodes', u'TuneTimeLimit', u'TuneResults', u
'TuneTrials', u'TuneOutput', u'TuneJobs', u'Dummy', u'OutputFlag']
None

Solution 0 has objective 1
Solution 1 has objective 53
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tighten the model

if the bound stagnates 
Cuts=3 
Presolve=3 
model.cbCut(lhs, sense, rhs)

x22 1
x23 1
x26 1
x27 1
x28 1
x34 1
x35 1
x38 1
x39 1
[sofdem:~/Documents/Code/gurobi]$ gurobi.sh mymip.py markshare_5_0.mps.gz
Optimize a model with 5 rows, 45 columns and 203 nonzeros
Found heuristic solution: objective 5335
Presolve time: 0.00s
Presolved: 5 rows, 45 columns, 203 nonzeros
Variable types: 0 continuous, 45 integer (40 binary)

Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0    0.00000    0    5 5335.00000    0.00000   100%     -    0s
H    0     0                     320.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
H    0     0                     239.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    5  239.00000    0.00000   100%     -    0s
*   36     0              29      96.0000000    0.00000   100%   2.7    0s
*   99    32              34      58.0000000    0.00000   100%   2.1    0s
H  506   214                      53.0000000    0.00000   100%   1.9    0s
H30682   442                       1.0000000    1.00000  0.00%   2.1    0s

Cutting planes:
  Cover: 26

Explored 30682 nodes (65348 simplex iterations) in 0.70 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.000000000000e+00, best bound 1.000000000000e+00, gap 0.0%
Optimal objective: 1
Matching parameters: [u'Cutoff', u'IterationLimit', u'NodeLimit', u'SolutionLimit', u'Time
Limit', u'FeasibilityTol', u'IntFeasTol', u'MarkowitzTol', u'MIPGap', u'MIPGapAbs', u'Opti
malityTol', u'PSDTol', u'Method', u'PerturbValue', u'ObjScale', u'ScaleFlag', u'SimplexPri
cing', u'Quad', u'NormAdjust', u'SiftMethod', u'Sifting', u'BarIterLimit', u'BarConvTol', 
u'BarCorrectors', u'BarHomogeneous', u'BarOrder', u'BarQCPConvTol', u'Crossover', u'Crosso
verBasis', u'BranchDir', u'Disconnected', u'Heuristics', u'MinRelNodes', u'MIPFocus', u'No
defileStart', u'NodefileDir', u'NodeMethod', u'NoRelHeuristic', u'PumpPasses', u'RINS', u'
SolutionNumber', u'SubMIPNodes', u'Symmetry', u'VarBranch', u'ZeroObjNodes', u'Cuts', u'Cu
tPasses', u'CliqueCuts', u'CoverCuts', u'CutAggPasses', u'FlowCoverCuts', u'FlowPathCuts',
 u'GomoryPasses', u'GUBCoverCuts', u'ImpliedCuts', u'MIPSepCuts', u'MIRCuts', u'NetworkCut
s', u'SubMIPCuts', u'ZeroHalfCuts', u'ModKCuts', u'ServerPool', u'ServerPassword', u'Aggre
gate', u'AggFill', u'PreDual', u'ConcurrentMIP', u'ConcurrentMIPJobs', u'DisplayInterval',
 u'DualReductions', u'IISMethod', u'InfUnbdInfo', u'LogFile', u'LogToConsole', u'MIQCPMeth
od', u'NumericFocus', u'QCPDual', u'PreCrush', u'PreDepRow', u'PreMIQPMethod', u'PreQLinea
rize', u'PrePasses', u'Presolve', u'PreSOS1BigM', u'PreSOS2BigM', u'PreSparsify', u'Result
File', u'Seed', u'Threads', u'NonBlocking', u'LazyConstraints', u'FeasRelaxBigM', u'Improv
eStartTime', u'ImproveStartGap', u'ImproveStartNodes', u'TuneTimeLimit', u'TuneResults', u
'TuneTrials', u'TuneOutput', u'TuneJobs', u'Dummy', u'OutputFlag']
None

Solution 0 has objective 1
Solution 1 has objective 53

40



/documentation/current/refman/index.html

/resource-center/

http://www.gurobi.com/
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you know your problem better 

than your solver does

42



tighten
the

model
43



Input n facility locations, m 
customers, cost cj to open facility 
j, cost dij to serve customer i from 
facility j 
Output a mimimum (opening and 
service) cost assignment of 
customers to facilities. 

Uncapacitated 

Facility Location 

Problem

Mixed Integer Linear Programming

Course Note

OSE 2014: Optimization

sophie.demassey@mines-paristech.fr

October 3, 2014

max

nX

j=1

c j x j

s.t.

nX

j=1

w j x j ∑ K

x j 2 {0,1} j = 1..n

min

nX

j=1

c j x j +
nX

j=1

mX

i=1

di j yi j

s.t.

nX

j=1

yi j = 1 i = 1..m

yi j ∑ x j j = 1..n, i = 1..m

x j 2 {0,1} j = 1..n

yi j 2 {0,1} j = 1..n, i = 1..m

Mixed Integer Linear Programming

Course Note

OSE 2014: Optimization

sophie.demassey@mines-paristech.fr

October 8, 2014

min

nX

j=1

c j x j +
nX

j=1

mX

i=1

di j yi j

s.t.

nX

j=1

yi j = 1 i = 1..m

mX

i=1

yi j ∑ mx j j = 1..n

x j 2 {0,1} j = 1..n

yi j 2 {0,1} j = 1..n, i = 1..m

x + y = 1

y ∏ x

x1 +·· ·+xn ∑ 1

x1 +·· ·+xn ∏ k

min

X

e2E
ce xe

s.t.

X

e2E |i2e
xe = 2 i 2V

X

±(Q)

xe ∏ 2 ;(Q (V

xe 2 {0,1} e 2 E

14 hours

2 seconds

m=n=40 44



Input n time periods, fixed 
production cost ft, unit production 
cost pt, unit storage cost ht, demand 
dt for each period t 
Output a mimimum (production and 
storage) cost production plan to 
satisfy the demand 

Uncapacitated Lot 

Sizing Problem

45
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min

nX

t=1

ft yt +
nX

t=1

pt xt +
nX

t=1

ht st

s.t. st°1 +xt = dt + st t = 1..n

xt ∑ M yt t = 1..n

yt 2 {0,1} t = 1..n

st , xt ∏ 0 t = 1, . . . ,n

s0 = 0

min

nX

t=1

ft yt +
nX

i=1

nX

t=i
pi zi t +

nX

i=1

nX

t=i+1

t°1X

j=i
h j zi t

s.t.

tX

i=1

zi t = dt t = 1..n

zi t ∑ dt yi i = 1..n; t = i ..n

yt 2 {0,1} t = 1..n

zi t ∏ 0 i = 1..n; t = i ..n

min

X

e2E
ce xe

s.t.

X

e2E |i2e
xe = 2 i 2V

X

±(Q)

xe ∏ 2 ;(Q (V

xe 2 {0,1} e 2 E
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production cost ft, unit production 
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min

nX

t=1

ft yt +
nX

t=1

pt xt +
nX

t=1

ht st

s.t. st°1 +xt = dt + st t = 1..n

xt ∑ M yt t = 1..n

yt 2 {0,1} t = 1..n

st , xt ∏ 0 t = 1, . . . ,n

s0 = 0

min

nX

t=1

ft yt +
nX

i=1

nX

t=i
pi zi t +

nX

i=1

nX

t=i+1

t°1X

j=i
h j zi t

s.t.

tX

i=1

zi t = dt t = 1..n

zi t ∑ dt yi i = 1..n; t = i ..n

yt 2 {0,1} t = 1..n

zi t ∏ 0 i = 1..n; t = i ..n

min

X

e2E
ce xe

s.t.

X

e2E |i2e
xe = 2 i 2V

X

±(Q)

xe ∏ 2 ;(Q (V

xe 2 {0,1} e 2 E

zit production in period i to satisfy demand of period t

LP=ILP
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Output define K points as centers 
so as to minimize the sum of the 
distances between each point and 
its nearest center.

K-median clustering

62

K-mean clustering

Output partition the points into 
K sets so as to minimize the sum 
of the distances between each 
point and the mean of points in 
its cluster.

Input n data points , a 
number K of clusters. Euclidean 
distance.

mj ∈ ℝp

project:  

power generation

https://colab.research.google.com/drive/19WNrTomQnD12aScfmJRxQZGdxwsL3ehc

https://colab.research.google.com/drive/19WNrTomQnD12aScfmJRxQZGdxwsL3ehc
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Physical limits of the units: 

minimum up/down times and  

maximum ramp up/down rates

Input (noncyclic) 
up/down times: minimum time  unit  may remain on or off; time 

 the th unit of type  has been on/off before period 0. 
ramp rates: maximum power increase/decrease  between two 
consecutive periods; maximum power  when turned on; maximum power  
before turned off; load  for th unit of type  before period 0. 
Input (cyclic) 
the status before period 0 ( ) are duplicated from period P-1.

Δ+
t , Δ−

t t ∈ T
Δ+

0it, Δ−
0it i t ∈ T

L+
t , L−

t
LS

t LE
t

L0it i t ∈ T

Δ+
0it, Δ−

0it, L0it

commitment must be monitored for units individually
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minimum uptime

Let  . 

Show that an unit of type  cannot been turned on more than once during  .  

Show that if an unit of type  is off at time  then it has not been turned on at any time 

 .  

  

Reformulate these assertions as a linear relation between the binary variables modelling the unit 

status and status change at appropriate periods.

P+
t (p) = {0 ≤ p′ ≤ p |

p−1

∑
k=p′ 

Δk < Δ+
t }

t P+
t (p)

t p
p′ ∈ P+

t (p)



65

minimum uptime

Let  . 

If an unit of type  is off at time  ( ) then it has not been turned on at any time 

 . 

  

P+
t (p) = {0 ≤ p′ ≤ p |

p−1

∑
k=p′ 

Δk < Δ+
t }

t p xitp = 0
p′ ∈ P+

t (p) ( ∑
p′ ∈P+

t (p)
y+

itp = 0)

∑
p′ ∈P+

t (p)
y+

itp′ 

≤ xitp ∀i, t, p
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minimum uptime (noncyclic case)

If unit  of type  has been on for exactly  hours before time 0, what can you say about 

its status and status change  at any period in 

? 

Fix binary variables modelling the status and status change  of a unit at given periods according to 

this assertion.

i t Δ+
0it > 0

P+
it = {p ≥ 0 |

p−1

∑
k=0

Δk < Δ+
t − Δ+

0it}
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minimum uptime (noncyclic case)

If unit  of type  has been on for exactly  hours before time 0, what can you say about 

its status and status change  at any period in 

? 

the unit must remain on, then it will not be turned on/off, on these periods 

i t Δ+
0it > 0

P+
it = {p ≥ 0 |

p−1

∑
k=0

Δk < Δ+
t − Δ+

0it}

xitp = 1,y+
itp = 0,y−

itp = 0 ∀i, t, p ∈ P+
it
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minimum up/down-time

∑
i

xitp = xtp, ∀t, p

xitp, y+
itp, y−

itp ∈ {0,1} ∀i, t, p

∑
p′ ∈P+

t (p)
y+

itp′ 
≤ xitp ∀i, t, p

xitp − xitp−1 = y+
itp − y−

itp ∀i, t, p
y+

itp + y−
itp ≤ 1 ∀i, t, p

∑
p′ ∈P−

t (p)
y−

itp′ 
≤ 1 − xitp ∀i, t, p

xitp = 1,y+
itp = 0,y−

itp = 0 ∀i, t, p ∈ P+
it

xitp = 0,y+
itp = 0,y−

itp = 0 ∀i, t, p ∈ P−
it
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minimum up/down-time

∑
i

xitp = xtp, ∀t, p

xitp, y+
itp, y−

itp ∈ {0,1} ∀i, t, p

∑
p′ ∈P+

t (p)
y+

itp′ 
≤ xitp ∀i, t, p

xitp − xitp−1 = y+
itp − y−

itp ∀i, t, p
y+

itp + y−
itp ≤ 1 ∀i, t, p

∑
p′ ∈P−

t (p)
y−

itp′ 
≤ 1 − xitp ∀i, t, p

xitp = 1,y+
itp = 0,y−

itp = 0 ∀i, t, p ∈ P+
it

xitp = 0,y+
itp = 0,y−

itp = 0 ∀i, t, p ∈ P−
it

xitp commit status of the ith unit of type t on period p 
yitp unit turned on (+) or off (-) on period p
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maximum ramp

If unit  of type  starts at p ( ) then  

Otherwise either unit i is on at p-1 and on at p and  

                            or unit i is on at p-1 and off at p and  

                            or unit i is off at p-1 and off at p and  

i t yitp = 1 litp − litp−1 ≤ LS
it

litp − litp−1 ≤ L+
it

litp − litp−1 < 0
litp − litp−1 = 0
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maximum ramp

If unit  of type  starts at p ( ) then  

Otherwise  either unit i is on at p-1  and on at p and  

                            or unit i is on at p-1  and off at p and  

                            or unit i is off at p-1  and off at p and  

i t yitp = 1,xitp−1 = 0 litp − litp−1 ≤ LS
it

(yitp = 0) (xitp−1 = 1) litp − litp−1 ≤ L+
it

(xitp−1 = 1) litp − litp−1 < 0 ≤ L+
it

(xitp−1 = 0) litp − litp−1 = 0

litp − litp−1 ≤ L+
t xitp−1 + LS

t y+
itp ∀i, t, p
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maximum ramp up/down

,

litp − litp−1 ≤ L+
t xitp−1 + LS

t y+
itp ∀i, t, p

xit(−1) = 1 if L0it > 0 else xit(−1) = 0 ∀i, t
litp−1 − litp ≤ L−

t xitp + LE
t y−

itp ∀i, t, p

∑
i

(litp − Ltxitp) = ltp, ∀t, p

Ltxitp ≤ litp ≤ Ltxitp ∈ {0,1} ∀i, t, p
lit(−1) = L0it ∀i, t
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maximum ramp up/down

,

litp − litp−1 ≤ L+
t xitp−1 + LS

t y+
itp ∀i, t, p

xit(−1) = 1 if L0it > 0 else xit(−1) = 0 ∀i, t
litp−1 − litp ≤ L−

t xitp + LE
t y−

itp ∀i, t, p

∑
i

(litp − Ltxitp) = ltp, ∀t, p

Ltxitp ≤ litp ≤ Ltxitp ∈ {0,1} ∀i, t, p

litp load of the ith unit of type t on period p

lit(−1) = L0it ∀i, t



the MILP way
a practical view

46

(5)
Sophie Demassey 2023



decomposition methods

47

Dantzig-Wolfe/column generation/branch&price

lagrangian relaxation

Benders decomposition

cut generation/branch&cut



Input n containers, m items, 
capacity c for all containers, 
weight wj for each item j 
Output a packing of all items in 
a mimimum number of containers 

Bin Packing Problem

Mixed Integer Linear Programming

Course Note

OSE 2014: Optimization

sophie.demassey@mines-paristech.fr

October 9, 2014

min

nX

i=1

yi

s.t.

mX

j=1

w j xi j ∑ c yi i = 1..n

nX

i=1

xi j = 1 j = 1..m

xi j 2 {0,1} i = 1..n; j = 1..m

yi 2 {0,1} i = 1..n

min

X

s2S

xs

s.t.

X

s2S

a j s xs = 1 j = 1..n

xs 2 {0,1} s 2S

min

X

e2E
ce xe

s.t.

X

e2E |i2e
xe = 2 i 2V

X

±(Q)

xe ∏ 2 ;(Q (V

xe 2 {0,1} e 2 E
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Input n containers, m items, 
capacity c for all containers, 
weight wj for each item j 
Output a packing of all items in 
a mimimum number of containers 

Bin Packing Problem
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min

nX

i=1

yi

s.t.

mX

j=1

w j xi j ∑ c yi i = 1..n

nX

i=1

xi j = 1 j = 1..m

xi j 2 {0,1} i = 1..n; j = 1..m

yi 2 {0,1} i = 1..n

min

X

s2S

xs

s.t.

X

s2S

a j s xs = 1 j = 1..n

xs 2 {0,1} s 2S

min

X

e2E
ce xe

s.t.

X

e2E |i2e
xe = 2 i 2V

X

±(Q)

xe ∏ 2 ;(Q (V

xe 2 {0,1} e 2 E

	S	all the possible arrangements of items in a bin

Dantzig-Wolfe decomposition

48

how to manage the exponential number of variables ?



delayed column generation for LP

49

1/ solve the restricted LP with the primal simplex algorithm where the 

omitted columns  are implicitly non-basic variables 

2/ find  that can profitably enter the basis , stop if none

N
j ∈ N cj < 0

 without  i.e. :min{cBxB + cNxN |ABxB + ANxN = b} (cN, AN) xN = 0

= dual cut generation: (cut separation = pricing problem)

min cx
Aix ≥ bi, ∀i
xj ≥ 0, ∀j

max ub
uAj ≤ cj, ∀j
ui ≥ 0, ∀i

given a basic dual solution   find  such that u j c̄j = cj − uAj < 0



application to Bin Packing

	S 	all the possible arrangements of items in a bin⊆ 2m

50

	S a feasible subset (i.e. covering all the items) 

1. solve the restricted LP: 
 

   get the corresponding dual solution  
2. look for an improving basic direction                  

= some  with                  

e.g. by solving  

3. if  add column  to  then 1 otherwise 

STOP:  solves the full LP (maybe not integer)

min{∑
s∈S

xs |∑
s∈S

ajsxs = 1 ∀j, xs ≥ 0 ∀s ∈ S}

u ∈ ℝm

s ∈ ∖S cs = 1 − ∑
j

ajsuj < 0

max{∑
j

ajuj |∑
j

wjaj ≤ K, a ∈ {0,1}m}

∑
j

a*j uj > 1 (1,a*) S

(xS,0)

S



Branch-and-Price for MILP

51

- branch-and-bound  for ILP with large number of variables where the LP relaxation 

is solved by column generation

- the branching strategy should keep the search tree balanced without altering the 

LP relaxation structure

- the pricing problem can be seen as an optimization problem but does not need to 

be solved at optimality, except for the convergence proof.

- convenient decomposition method when additional constraints only appear in the 

pricing problem                          

ex (bin packing): branch by fixing to 0 either all  or 
all  for some pair of items  s.t.  

xs |{i, j} ⊆ s
xs |{i, j} ⊈ s (i, j) 0 < ∑

s
aisajsx*s < 1

ex (bin packing): conflict constraint ∑
j∈C

aj ≤ 1



Input n items, m bins, value cj 
and weight wj for each item j, 
capacity Ki for each bin i. 
Output a maximum value subset of 
items packed in the bins.

Multi 0-1 Knapsack 

Problem

52



Input n items, m bins, value cj 
and weight wj for each item j, 
capacity Ki for each bin i. 
Output a maximum value subset of 
items packed in the bins.

Multi 0-1 Knapsack 

Problem

lagrangian relaxation

52find the smallest upper bound 

u ∈ ℝn
+



Lagrangian Relaxation

53

dualize the complicating or coupling constraints of an ILP:

(P) : z = max ∑
k

ckxk

∑
k

Dkxk ≤ ek

Akxk ≤ bk, ∀k
xk ∈ ℤp × ℝn, ∀k

(Pu) : zk
u = max ckxk − uDkxk

Akxk ≤ bk
xk ∈ ℤp × ℝn

l(u) = ue + ∑
k

zu
k

strong duality may not hold if p>0, ie the dual only provides an upper bound      w ≥ z

(D) : w = min
u≥0

l(u)

is the lagrangian dual problem 

 is the lagrangian suproblem with multipliers 

(D)
(Pu) u



lagrangian relaxation applied to MKP

55

(P) : z = max ∑
i

∑
j

cjxij

∑
j

wjxij ≤ Ki, ∀i

∑
i

xij ≤ 1, ∀j

xij ∈ {0,1}, ∀i, j

-
function  is convex and a subgradient at  is   where   an optimal solution of 

 a 0-1 knapsack with altered costs 

- at each iteration, for a given , the solution  is KP-feasible but some items may be assigned more than 

once: remove the less profitable doublons to get a feasible solution 

- if no doublon and if every item  with  is assigned then  is optimal for 

l u ≥ 0 1 − ∑
i

xu
i xu

i

(Pu
i )

u xu

j uj > 0 xu (P)

(Pu
i ) : zu

i = max ∑
j

(cj − uj)xij

∑
j

wjxij ≤ Ki

xij ∈ {0,1}, ∀j

l(u) = ∑
j

uj + ∑
i

zu
i(D) : w = min

u≥0
l(u) with



lagrangian relaxation: applications

56

- in MKP: the knapsacks subproblems share the same set of items but different 

capacities: helpful to speed up the solution of  

- the lagrangian dual is always at least as good as the LP relaxation 

- sometimes it is not better, ex: dualize the knapsack constraints instead of the 

assignment constraints in MKP 

- lagrangian relaxation is applied, daily and for decades, by EDF to the Unit Commitment 

Problem for the french electricity production:  dualize the unit coupling constraints and 

generate independent commitment plans for each unit. It allows to take into account 

specific technical rules (e.g. ramping) for each unit types. 

- another typical application in planning: dualize time (loosely-)coupling constraints

(Pu)



Benders decomposition

57

- typically: problems coupling binary/continuous variables

where 

 can be dualized 

P : min{cx + dy |x ∈ P ∩ ℤp, Ax + By ≥ e}
f(x) = min{dy |By ≥ e − Ax}

- strong duality: either feasible     or 

infeasible and it exists a ray 

f(x) = max{u(e − Ax) |uB ≤ d}
u |λuB ≤ d ∀λ, u(e − Ax) > 0

P : min{cx + z |x ∈ P ∩ ℤp, z ≥ f(x)}
- relax  then at each iteration : solve the relaxation and get solution 

, solve the dual subproblem get and generate a cut, either 

 if feasible or  otherwise  

z ≥ f(x) k
xk uk

z ≥ uk(e − Ax) 0 ≥ uk(e − Ax)
- stop when lower bound  is equal to best  upper bound             cxk + zk cxj + f(xj)



a glimpse of MINLP

58

- NLP-B&B:  bound by solving the NLP relaxation with an interior point method

- OA algorithm: cutting-plane method with cuts as first-order approximation (LP outer 

approximation)

-  LP-NLP B&B: a branch-and-cut with an LP relaxation with OA cuts generated at each 

integer node

convex continuous relaxation: 

nonconvex continuous relaxation: 

- spatial B&B: branch on integer variables and on nonconvex constraints



MILP perks

declarative

versatile

flexible

performance

59

models, not algorithms

sophisticated algorithms

general-purpose solvers

covers many problems

large-scale
decomposition methods

certification
primal-dual bounds



combinatorial optimization 

beyond MILP

logic & constraint 

programming
integer nonlinear 

programming

metaheuristics

dynamic programming

60

graph algorithms

machine learning
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