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1 Model examples

1.1 Integer Knapsack Problem
Input: 𝑛 items, value 𝑐𝑗 and weight𝑤𝑗 ≥ 0 for each item 𝑗, a capacity 𝐾 ≥ 0.
Output: a maximum value subset of items whose total weight does not exceed capacity 𝐾 .

max
𝑛

𝑗=1

𝑐𝑗𝑥𝑗

s.t.
𝑛

𝑗=1

𝑤𝑗𝑥𝑗 ≤𝐾

𝑥𝑗 ∈ {0,1} 𝑗 = 1..𝑛

with 𝑥𝑗 = 1 iff item 𝑗 is selected

1.2 Uncapacitated Facility Location Problem
Input: 𝑛 facility locations,𝑚 customers, cost 𝑐𝑗 to open facility 𝑗, cost 𝑑𝑖𝑗 to serve customer 𝑖 from facility
on location 𝑗.
Output: a minimum (opening and service) cost assignment of the customers to the open facilities.

min
𝑛

𝑗=1

𝑐𝑗𝑥𝑗 +
𝑛

𝑗=1

𝑚

𝑖=1

𝑑𝑖𝑗𝑦𝑖𝑗

s.t.
𝑛

𝑗=1

𝑦𝑖𝑗 = 1 𝑖 = 1..𝑚

𝑦𝑖𝑗 ≤ 𝑥𝑗 𝑗 = 1..𝑛, 𝑖 = 1..𝑚
𝑥𝑗 ∈ {0,1} 𝑗 = 1..𝑛
𝑦𝑖𝑗 ∈ {0,1} 𝑗 = 1..𝑛, 𝑖 = 1..𝑚

where 𝑥𝑗 = 1 iff a facility is open at location 𝑗 and 𝑦𝑖𝑗 = 1 iff customer 𝑖 is served from facility 𝑗.
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1.3 Scheduling Problem
Input: 𝑛 tasks and one machine, duration 𝑝𝑗 and release date 𝑟𝑗 for each task 𝑗.
Output: 1|𝑟𝑗|∑𝐶𝑗 : a schedule of the tasks on the machine of minimum total completion time.

min
𝑛

𝑖=1
(𝑠𝑖 +𝑝𝑖)

s.t. 𝑠𝑖 ≥ 𝑟𝑖 𝑗 = 1..𝑛
𝑠𝑗 −𝑠𝑖 ≥𝑀𝑥𝑖𝑗 +(𝑝𝑖 −𝑀) 𝑖, 𝑗 = 1..𝑛
𝑥𝑖𝑗 +𝑥𝑗𝑖 = 1 𝑖, 𝑗 = 1..𝑛;𝑖 < 𝑗
𝑠𝑗 ≥ 𝑟𝑖 𝑗 = 1..𝑛
𝑥𝑖𝑗 ∈ {0,1} 𝑖, 𝑗 = 1..𝑛

where 𝑥𝑖𝑗 = 1 iff task 𝑖 precede task 𝑗, 𝑠𝑗 is the starting time of task 𝑗, 𝑠𝑛+1 is the makespan, and𝑀 ≥∑𝑛
𝑗=1𝑝𝑗 .

1.4 K-median Problem
Input: 𝑛 data points, distance 𝑑𝑖𝑗 between each pair of points (𝑖, 𝑗), a number 0 < 𝑘 < 𝑛.
Output: a selection of 𝑘 points, the centers, minimizing the sum of the distances between each point and
the nearest center.

min
𝑛

𝑖=1

𝑛

𝑗=1

𝑑𝑖𝑗𝑦𝑖𝑗

s.t.
𝑛

𝑗=1

𝑦𝑖𝑗 = 1 𝑖 = 1..𝑛

𝑦𝑖𝑗 ≤ 𝑥𝑗 𝑖, 𝑗 = 1..𝑛
𝑛

𝑗=1

𝑥𝑗 =𝑘

𝑦𝑖𝑗 ∈ {0,1},𝑥𝑗 ∈ {0,1} 𝑖, 𝑗 = 1..𝑛

where 𝑦𝑗 = 1 iff point 𝑗 is a center and 𝑥𝑖𝑗 = 1 if 𝑗 is the nearest center of 𝑖.

1.5 Market Split Problem
Input: 1 company with 2 divisions,𝑚 products, 𝑛 retailers, availability 𝑑𝑗 for each product 𝑗, demand 𝑎𝑖𝑗 of
each retailer 𝑖 for each product 𝑗.
Output: an assignement of the retailers to the divisions approaching a 50/50 production split for each prod-
uct.

min
𝑚

𝑗=1

𝑠+𝑗 +𝑠−𝑗

s.t.
𝑛

𝑖=1

𝑎𝑖𝑗𝑥𝑖 +𝑠+𝑗 −𝑠−𝑗 =
𝑑𝑗
2 𝑗 = 1..𝑚

𝑥𝑖 ∈ {0,1} 𝑖 = 1..𝑛
𝑠+𝑗 ≥ 0,𝑠−𝑗 ≥ 0 𝑗 = 1..𝑚

where 𝑥𝑖 = 1 iff retailer 𝑖 is assigned to division 1, 𝑠+𝑗 −𝑠−𝑗 is the slack value (𝑠+𝑗 is the positive part and 𝑠−𝑗 is
the negative part) between the volume produced by division 1 and the desired volume (𝑑𝑗 ∗50%).
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1.6 Capacitated Transhipment Problem
Input: directed graph 𝐺 = (𝑉,𝐴), demand or supply 𝑏𝑖 at each node 𝑛, capacity ℎ𝑖𝑗 and unit flow cost 𝑐𝑖𝑗 on
each arc (𝑖, 𝑗).
Output: a minimum cost integer flow to satisfy the demand.

min 
(𝑖,𝑗)∈𝐴

𝑐𝑖𝑗𝑥𝑖𝑗

s.t. 
𝑗∈𝛿+(𝑖)

𝑥𝑖𝑗 − 
𝑗∈𝛿−(𝑖)

𝑥𝑖𝑗 = 𝑏𝑖 𝑖 ∈ 𝑉

𝑥𝑖𝑗 ≤ℎ𝑖𝑗 (𝑖, 𝑗) ∈ 𝐴
𝑥𝑖𝑗 ∈ ℤ+ (𝑖, 𝑗) ∈ 𝐴

where 𝑥𝑖𝑗 the flow on arc (𝑖, 𝑗)

1.7 Traveling Salesman Problem
Input: a set𝑉 of cities, 𝐸 =𝑉2, a distance 𝑐𝑖𝑗 = 𝑐𝑗𝑖 between each cities 𝑖 and 𝑗.
Output: a tour visiting every city exactly once.

min 
𝑒∈𝐸

𝑐𝑒𝑥𝑒

s.t. 
𝑒∈𝐸|𝑖∈𝑒

𝑥𝑒 = 2 𝑖 ∈ 𝑉


𝛿(𝑄)

𝑥𝑒 ≥ 2 ∅⊊𝑄 ⊊𝑉

𝑥𝑒 ∈ {0,1} 𝑒 ∈ 𝐸
where 𝑥𝑒 = 1 iff the edge 𝑒 belongs to the tour.

1.8 Uncapacitated Lot Sizing Problem
Input: 𝑛 timeperiods, fixproduction cost𝑓𝑡 , unit production cost𝑝𝑡 , unit storage costℎ𝑡 at period 𝑡, demand
𝑑𝑡 at each period 𝑡, initial stock 𝑠0.
Output: a minimum (production and storage) cost production plan that satsify the demand.

min
𝑛

𝑡=1

𝑓𝑡𝑦𝑡 +
𝑛

𝑡=1

𝑝𝑡𝑥𝑡 +
𝑛

𝑡=1

ℎ𝑡𝑠𝑡

s.t. 𝑠𝑡−1+𝑥𝑡 = 𝑑𝑡 +𝑠𝑡 𝑡 = 1..𝑛
𝑥𝑡 ≤𝑀𝑡𝑦𝑡 𝑡 = 1..𝑛
𝑦𝑡 ∈ {0,1} 𝑡 = 1..𝑛
𝑠𝑡 ,𝑥𝑡 ≥ 0 𝑡 = 1,…,𝑛

where 𝑦𝑡 = 1 iff production occurs during period 𝑡, 𝑥𝑡 is the amount produced during period 𝑡, 𝑦𝑡 is the
amount stored at the beginning of period 𝑡, and where𝑀𝑡 ≥∑𝑛

𝑖=𝑡 𝑑𝑖 for each period 𝑡.

min
𝑛

𝑡=1

𝑓𝑡𝑦𝑡 +
𝑛

𝑖=1

𝑛

𝑡=𝑖

𝑝𝑖𝑧𝑖𝑡 +
𝑛

𝑖=1

𝑛


𝑡=𝑖+1

𝑡−1

𝑗=𝑖

ℎ𝑗𝑧𝑖𝑡

s.t.
𝑡

𝑖=1

𝑧𝑖𝑡 = 𝑑𝑡 𝑡 = 1..𝑛

𝑧𝑖𝑡 ≤ 𝑑𝑡𝑦𝑖 𝑖 = 1..𝑛;𝑡 = 𝑖..𝑛
𝑦𝑡 ∈ {0,1} 𝑡 = 1..𝑛
𝑧𝑖𝑡 ≥ 0 𝑖 = 1..𝑛;𝑡 = 𝑖..𝑛

where 𝑧𝑖𝑡 is the amount produced in period 𝑖 to satisfy demand of period 𝑡.
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1.9 Bin Packing Problem
Input: 𝑛 items, weight𝑤𝑗 ≥ 0 for each item 𝑗,𝑚 containers each of capacity 𝐾 ≥ 0.
Output: an assignment of the items to a minimum number of containers.

min
𝑛

𝑖=1

𝑦𝑖

s.t.
𝑚

𝑗=1

𝑤𝑗𝑥𝑖𝑗 ≤𝐾𝑦𝑖 𝑖 = 1..𝑛

𝑛

𝑖=1

𝑥𝑖𝑗 = 1 𝑗 = 1..𝑚

𝑥𝑖𝑗 ∈ {0,1} 𝑖 = 1..𝑛; 𝑗 = 1..𝑚
𝑦𝑖 ∈ {0,1} 𝑖 = 1..𝑛

where 𝑦𝑖 = 1 iff container 𝑖 is used and 𝑥𝑖𝑗 = 1 iff item 𝑗 is assigned to container 𝑖.
The Dantzig-Wolfe formulation (can be solved by delayed column generation):

min 
𝑠∈𝒮

𝑥𝑠

s.t. 
𝑠∈𝒮

𝑎𝑗𝑠𝑥𝑠 = 1 𝑗 = 1..𝑛

𝑥𝑠 ∈ {0,1} 𝑠 ∈𝒮
where𝒮= {𝑠 ⊂ {1,…,𝑛} | ∑𝑗∈𝑠𝑤𝑗 ≤𝐾} is the set of all possible arrangements of items to one container, and
𝑥𝑠 = 1 iff all the items in 𝑠 (and no others) are assigned to the same container.
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1.10 Multi 0-1 Knapsack Problem
Input: 𝑛 items, value 𝑐𝑗 and weight𝑤𝑗 ≥ 0 for each item 𝑗,𝑚 containers, capacity 𝐾𝑖 ≥ 0 for each container
𝑖.
Output: amaximumvalue subset of items to assign to the containers such that the capacity of each container
is not exceeded.

max
𝑚

𝑖=1

𝑛

𝑗=1

𝑐𝑗𝑥𝑖𝑗

s.t.
𝑛

𝑗=1

𝑤𝑗𝑥𝑖𝑗 ≤𝐾𝑖 𝑖 = 1..𝑚

𝑚

𝑖=1

𝑥𝑖𝑗 ≤ 1 𝑗 = 1..𝑛

𝑥𝑖𝑗 ∈ {0,1} 𝑗 = 1..𝑛,𝑖 = 1..𝑚

with 𝑥𝑖𝑗 = 1 iff item 𝑗 is assigned to container 𝑖
The lagrangian dual:

min 𝑧𝜋
s.t. 𝜋𝑖 ≥ 0 𝑖 = 1..𝑚

𝑧𝜋 = max
𝑚

𝑖=1

𝑛

𝑗=1

𝑐𝑗𝑥𝑖𝑗 −
𝑚

𝑖=1

𝜋𝑖(
𝑛

𝑗=1

𝑤𝑗𝑥𝑖𝑗 −𝐾𝑖)

s.t.
𝑚

𝑖=1

𝑥𝑖𝑗 ≤ 1 𝑗 = 1..𝑛

𝑥𝑖𝑗 ∈ {0,1} 𝑗 = 1..𝑛,𝑖 = 1..𝑚

where 𝜋𝑖 is the penalty for violating the capacity of container 𝑖
An other relaxation (dualization of the coupling constraints):

min
𝑚

𝑖=1

𝑧𝑗𝑢 +
𝑛

𝑗=1

𝑢𝑗

s.t. 𝑢𝑗 ≥ 0 𝑗 = 1..𝑛

𝑧𝑖𝑢 = max
𝑛

𝑗=1
(𝑐𝑗 −𝑢𝑗)𝑥𝑖𝑗

s.t.
𝑛

𝑗=1

𝑤𝑗𝑥𝑖𝑗 ≤𝐾𝑖 𝑖 = 1..𝑚

𝑥𝑖𝑗 ∈ {0,1} 𝑗 = 1..𝑛,𝑖 = 1..𝑚
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2 Outline

2.1 Modeling booleans with binary variables
indicator linearization
𝛿 = 1 ⟹ 𝑦≥𝑎 𝑦 ≥ 𝐿+(𝑎−𝐿)𝛿
𝛿 = 0 ⟹ 𝑦≥𝑎 𝑦 ≥ 𝐿+(𝑎−𝐿)(1−𝛿)
𝑦 < 𝑎 ⟹ 𝛿 = 1 𝑦 ≥ 𝐿+(𝑎−𝐿)(1−𝛿)
𝛿 = 1 ⟹ 𝑦>𝑎 𝑦 ≥ 𝐿+(𝑎+𝜖−𝐿)𝛿
𝛿 = 1 ⟹ 𝑦≤𝑎 𝑦 ≤𝑈 +(𝑎−𝑈)𝛿
𝛿 = 1 ⟺ 𝑦>𝑎 𝑚+(𝑎+𝜖−𝑚)𝛿 ≤ 𝑦 ≤ 𝑎+(𝑈 −𝑎)𝛿
𝛿 = 1 ⟹ 𝑦≥𝑥 with 𝑥 ∈ [𝑚,𝑀],𝑚≥𝐿 𝑦≥ 𝑥+(𝐿 −𝑀)(1−𝛿)

where 𝛿 ∈ {0,1}, 𝑦 ∈ [𝐿,𝑈] ⊆ ℝ, 𝐿 < 𝑎 <𝑈 , 𝜖 > 0 small

• Given the optimization sense, it is often enough to enforce implication instead of equivalence, ex:
min{𝑦 | 𝛿 ∈ Δ,𝛿 = 1 ⟺ 𝑦>𝑎} =min{𝑦 | 𝛿 ∈ Δ,𝛿 = 1 ⟹ 𝑦>𝑎}

2.2 Modeling logic/numeric relations with binary variables
condition example linearization
exclusive disjunction either 𝑐 or ¬𝑐 𝛿 = 1 ⟺ 𝑐
exclusive disjunction either 𝑐1 or 𝑐2 𝛿1+𝛿2 = 1
disjunction 𝑐1 or 𝑐2 𝛿1+𝛿2 ≥ 1
dependency if 𝑐1 then 𝑐2 𝛿2 ≥ 𝛿1
exclusive alternative exactly 1 out of 𝑛 ∑𝑛

𝑖=1𝛿𝑖 = 1
counter exactly 𝑘 out of 𝑛 ∑𝑛

𝑖=1𝛿𝑖 =𝑘
bound at least 𝑘 out of 𝑛 ∑𝑛

𝑖=1𝛿𝑖 ≥𝑘
bound at most 𝑘 out of 𝑛 ∑𝑛

𝑖=1𝛿𝑖 ≤𝑘

2.3 Modeling non-linear functions with binary variables

set-up value:
𝑓 ∶ [0,𝑈] ⊆ ℝ+ →ℝ+
𝑓(𝑥) = 0 if 𝑥 = 0

𝑎𝑥+𝑏 if 0 < 𝑥 ≤𝑈
𝑓(𝑥) = 𝑎𝑥+𝑏𝛿
𝜖𝛿 ≤ 𝑥 ≤𝑈𝛿
𝛿 ∈ {0,1}

discrete value:
𝑓(𝑥) = 𝑓𝑖 if 𝑥 = 𝑖
𝑓(𝑥) =∑𝑖 𝛿𝑖𝑓𝑖
∑𝑖 𝑖𝛿𝑖 = 𝑥
∑𝑖 𝛿𝑖 = 1
𝛿𝑖 ∈ {0,1} 𝑖 = 0..𝑛

piecewise linear:
𝑓(𝑥) =∑𝑖𝜆𝑖𝑓(𝑎𝑖)
∑𝑖 𝑎𝑖𝜆𝑖 = 𝑥
∑𝑖𝜆𝑖 = 1
𝜆𝑖 ∈ [0,1] 𝑖 = 0..𝑛
with 𝑆𝑂𝑆2(𝜆𝑖)
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