

# Modelling in Mixed Integer Linear Programming

sophie.demassey@minesparis.psl.eu

January 25, 2024

# 1 Model examples

#### 1.1 Integer Knapsack Problem

**Input:** n items, value  $c_j$  and weight  $w_j \ge 0$  for each item j, a capacity  $K \ge 0$ . **Output:** a maximum value subset of items whose total weight does not exceed capacity K.

$$\max \sum_{j=1}^{n} c_j x_j$$
 s.t. 
$$\sum_{j=1}^{n} w_j x_j \le K$$
 
$$x_j \in \{0,1\} \qquad j = 1..n$$

with  $x_i = 1$  iff item j is selected

#### 1.2 Uncapacitated Facility Location Problem

**Input:** n facility locations, m customers, cost  $c_j$  to open facility j, cost  $d_{ij}$  to serve customer i from facility on location j.

Output: a minimum (opening and service) cost assignment of the customers to the open facilities.

$$\min \sum_{j=1}^{n} c_{j} x_{j} + \sum_{j=1}^{n} \sum_{i=1}^{m} d_{ij} y_{ij}$$
s.t. 
$$\sum_{j=1}^{n} y_{ij} = 1$$

$$i = 1..m$$

$$y_{ij} \le x_{j}$$

$$j = 1..n, i = 1..m$$

$$y_{ij} \in \{0, 1\}$$

$$j = 1..n, i = 1..m$$

$$j = 1..n, i = 1..m$$

where  $x_j = 1$  iff a facility is open at location j and  $y_{ij} = 1$  iff customer i is served from facility j.



#### 1.3 Scheduling Problem

**Input:** n tasks and one machine, duration  $p_i$  and release date  $r_i$  for each task j.

**Output:**  $1|r_i|\sum C_i$ : a schedule of the tasks on the machine of minimum total completion time.

$$\min \sum_{i=1}^{n} (s_i + p_i)$$
s.t.  $s_i \ge r_i$   $j = 1...n$ 

$$s_j - s_i \ge Mx_{ij} + (p_i - M) \quad i, j = 1...n$$

$$x_{ij} + x_{ji} = 1 \quad i, j = 1...n; i < j$$

$$s_j \ge r_i \quad j = 1...n$$

$$x_{ii} \in \{0, 1\} \quad i, j = 1...n$$

 $x_{ij} \in \{0,1\} \qquad \qquad i,j=1..n$  where  $x_{ij}=1$  iff task i precede task j,  $s_j$  is the starting time of task j,  $s_{n+1}$  is the makespan, and  $M \geq \sum_{j=1}^n p_j$ .

#### 1.4 K-median Problem

**Input:** n data points, distance  $d_{ij}$  between each pair of points (i,j), a number 0 < k < n.

**Output:** a selection of k points, the centers, minimizing the sum of the distances between each point and the nearest center.

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij} y_{ij}$$
s.t. 
$$\sum_{j=1}^{n} y_{ij} = 1$$

$$i = 1..n$$

$$y_{ij} \le x_{j}$$

$$i, j = 1..n$$

$$\sum_{j=1}^{n} x_{j} = k$$

$$y_{ij} \in \{0, 1\}, x_{j} \in \{0, 1\}$$

$$i, j = 1..n$$

where  $y_j = 1$  iff point j is a center and  $x_{ij} = 1$  if j is the nearest center of i.

## 1.5 Market Split Problem

**Input:** 1 company with 2 divisions, m products, n retailers, availability  $d_j$  for each product j, demand  $a_{ij}$  of each retailer i for each product j.

**Output:** an assignement of the retailers to the divisions approaching a 50/50 production split for each product.

$$\min \sum_{j=1}^{m} s_{j}^{+} + s_{j}^{-}$$
s.t. 
$$\sum_{i=1}^{n} a_{ij} x_{i} + s_{j}^{+} - s_{j}^{-} = \frac{d_{j}}{2} \qquad j = 1..m$$

$$x_{i} \in \{0, 1\} \qquad i = 1..n$$

$$s_{j}^{+} \ge 0, s_{j}^{-} \ge 0 \qquad j = 1..m$$

where  $x_i = 1$  iff retailer i is assigned to division 1,  $s_j^+ - s_j^-$  is the slack value ( $s_j^+$  is the positive part and  $s_j^-$  is the negative part) between the volume produced by division 1 and the desired volume ( $d_j * 50\%$ ).



#### 1.6 Capacitated Transhipment Problem

**Input:** directed graph G = (V, A), demand or supply  $b_i$  at each node n, capacity  $h_{ij}$  and unit flow cost  $c_{ij}$  on each arc (i, j).

Output: a minimum cost integer flow to satisfy the demand.

$$\begin{split} & \min \ \sum_{(i,j) \in A} c_{ij} x_{ij} \\ & \text{s.t.} \ \sum_{j \in \delta^+(i)} x_{ij} - \sum_{j \in \delta^-(i)} x_{ij} = b_i \qquad i \in V \\ & x_{ij} \leq h_{ij} \qquad \qquad (i,j) \in A \\ & x_{ij} \in \mathbb{Z}_+ \qquad \qquad (i,j) \in A \end{split}$$

where  $x_{ij}$  the flow on arc (i,j)

#### 1.7 Traveling Salesman Problem

**Input:** a set V of cities,  $E = V^2$ , a distance  $c_{ij} = c_{ji}$  between each cities i and j. **Output:** a tour visiting every city exactly once.

rexactly once. 
$$\min \sum_{e \in E} c_e x_e$$
 
$$\mathrm{s.t.} \sum_{e \in E \mid i \in e} x_e = 2 \qquad \qquad i \in V$$
 
$$\sum_{\delta(Q)} x_e \geq 2 \qquad \qquad \emptyset \subsetneq Q \subsetneq V$$
 
$$x_e \in \{0,1\} \qquad \qquad e \in E$$
 gs to the tour.

where  $x_e = 1$  iff the edge e belongs to the tour.

#### 1.8 Uncapacitated Lot Sizing Problem

**Input:** n time periods, fix production cost  $f_t$ , unit production cost  $p_t$ , unit storage cost  $h_t$  at period t, demand  $d_t$  at each period t, initial stock  $s_0$ .

Output: a minimum (production and storage) cost production plan that satsify the demand.

$$\min \sum_{t=1}^{n} f_t y_t + \sum_{t=1}^{n} p_t x_t + \sum_{t=1}^{n} h_t s_t$$
s.t.  $s_{t-1} + x_t = d_t + s_t$   $t = 1..n$ 

$$x_t \le M_t y_t$$
  $t = 1..n$ 

$$y_t \in \{0, 1\}$$
  $t = 1..n$ 

$$s_t, x_t \ge 0$$
  $t = 1, ..., n$ 

where  $y_t = 1$  iff production occurs during period t,  $x_t$  is the amount produced during period t,  $y_t$  is the amount stored at the beginning of period t, and where  $M_t \ge \sum_{i=t}^n d_i$  for each period t.

$$\min \sum_{t=1}^{n} f_t y_t + \sum_{i=1}^{n} \sum_{t=i}^{n} p_i z_{it} + \sum_{i=1}^{n} \sum_{t=i+1}^{n} \sum_{j=i}^{t-1} h_j z_{it}$$
s.t. 
$$\sum_{i=1}^{t} z_{it} = d_t$$

$$z_{it} \le d_t y_i$$

$$y_t \in \{0, 1\}$$

$$z_{it} \ge 0$$

$$i = 1..n; t = i..n$$

$$i = 1..n; t = i..n$$

where  $z_{it}$  is the amount produced in period i to satisfy demand of period t.



#### 1.9 Bin Packing Problem

**Input:** n items, weight  $w_j \ge 0$  for each item j, m containers each of capacity  $K \ge 0$ . **Output:** an assignment of the items to a minimum number of containers.

$$\min \sum_{i=1}^{n} y_{i}$$
s.t. 
$$\sum_{j=1}^{m} w_{j} x_{ij} \le K y_{i} \qquad i = 1..n$$

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad j = 1..m$$

$$x_{ij} \in \{0, 1\} \qquad i = 1..n; j = 1..m$$

$$y_{i} \in \{0, 1\} \qquad i = 1..n$$

 $y_i \in \{0,1\}$  i=1..n where  $y_i=1$  iff container i is used and  $x_{ij}=1$  iff item j is assigned to container i. The Dantzig-Wolfe formulation (can be solved by delayed column generation):

$$\min \sum_{s \in \mathcal{S}} x_s$$
s.t. 
$$\sum_{s \in \mathcal{S}} a_{js} x_s = 1 \qquad j = 1..n$$

$$x_s \in \{0, 1\} \qquad s \in \mathcal{S}$$
 $\leq K$  is the set of all possible arrangen

 $x_s \in \{0,1\} \qquad s \in \mathcal{S}$  where  $\mathcal{S} = \{s \subset \{1,\dots,n\} \mid \sum_{j \in s} w_j \leq K\}$  is the set of all possible arrangements of items to one container, and  $x_s = 1$  iff all the items in s (and no others) are assigned to the same container.



#### 1.10 Multi 0-1 Knapsack Problem

**Input:** n items, value  $c_j$  and weight  $w_j \ge 0$  for each item j, m containers, capacity  $K_i \ge 0$  for each container i.

**Output:** a maximum value subset of items to assign to the containers such that the capacity of each container is not exceeded.

$$\max \sum_{i=1}^{m} \sum_{j=1}^{n} c_{j} x_{ij}$$
s.t. 
$$\sum_{j=1}^{n} w_{j} x_{ij} \le K_{i}$$

$$i = 1..m$$

$$\sum_{i=1}^{m} x_{ij} \le 1$$

$$j = 1..n$$

$$x_{ij} \in \{0, 1\}$$

$$j = 1..n, i = 1..m$$

with  $x_{ij} = 1$  iff item j is assigned to container i The lagrangian dual:

$$\begin{aligned} \min z_{\pi} \\ \text{s.t. } \pi_{i} &\geq 0 \quad i = 1..m \\ z_{\pi} &= \quad \max \sum_{i=1}^{m} \sum_{j=1}^{n} c_{j} x_{ij} - \sum_{i=1}^{m} \pi_{i} (\sum_{j=1}^{n} w_{j} x_{ij} - K_{i}) \\ \text{s.t. } \sum_{i=1}^{m} x_{ij} &\leq 1 \qquad \qquad j = 1..n \\ x_{ij} &\in \{0,1\} \qquad \qquad j = 1..m, i = 1..m \end{aligned}$$

where  $\pi_i$  is the penalty for violating the capacity of container i An other relaxation (dualization of the coupling constraints):

$$\begin{aligned} \min \sum_{i=1}^{m} z_{u}^{j} &+ \sum_{j=1}^{n} u_{j} \\ \text{s.t. } u_{j} \geq 0 & j = 1..n \\ z_{u}^{i} = & \max \sum_{j=1}^{n} (c_{j} - u_{j}) x_{ij} \\ \text{s.t. } \sum_{j=1}^{n} w_{j} x_{ij} \leq K_{i} & i = 1..m \\ x_{ij} \in \{0,1\} & j = 1..n, i = 1..m \end{aligned}$$



## 2 Outline

## 2.1 Modeling booleans with binary variables

| indicator                                                         | linearization                                              |
|-------------------------------------------------------------------|------------------------------------------------------------|
| $\delta = 1 \implies y \ge a$                                     | $y \ge L + (a - L)\delta$                                  |
| $\delta = 0 \implies y \ge a$                                     | $y \ge L + (a - L)(1 - \delta)$                            |
| $y < a \implies \delta = 1$                                       | $y \ge L + (a - L)(1 - \delta)$                            |
| $\delta = 1 \implies y > a$                                       | $y \ge L + (a + \epsilon - L)\delta$                       |
| $\delta = 1 \implies y \le a$                                     | $y \le U + (a - U)\delta$                                  |
| $\delta = 1 \iff y > a$                                           | $m + (a + \epsilon - m)\delta \le y \le a + (U - a)\delta$ |
| $\delta = 1 \implies y \ge x \text{ with } x \in [m, M], m \ge L$ | $y \ge x + (L - M)(1 - \delta)$                            |

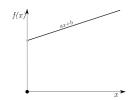
where  $\delta \in \{0, 1\}$ ,  $y \in [L, U] \subseteq \mathbb{R}$ , L < a < U,  $\epsilon > 0$  small

• Given the optimization sense, it is often enough to enforce implication instead of equivalence, ex:  $\min\{y \mid \delta \in \Delta, \delta = 1 \iff y > a\} = \min\{y \mid \delta \in \Delta, \delta = 1 \implies y > a\}$ 

## 2.2 Modeling logic/numeric relations with binary variables

| condition             | example               | linearization                   |  |
|-----------------------|-----------------------|---------------------------------|--|
| exclusive disjunction | either c or ¬c        | $\delta = 1 \iff c$             |  |
| exclusive disjunction | either $c_1$ or $c_2$ | $\delta_1 + \delta_2 = 1$       |  |
| disjunction           | $c_1 \ or \ c_2$      | $\delta_1 + \delta_2 \ge 1$     |  |
| dependency            | if $c_1$ then $c_2$   | $\delta_2 \geq \delta_1$        |  |
| exclusive alternative | exactly 1 out of n    | $\sum_{i=1}^{n} \delta_i = 1$   |  |
| counter               | exactly k out of n    | $\sum_{i=1}^{n} \delta_i = k$   |  |
| bound                 | at least k out of n   | $\sum_{i=1}^{n} \delta_i \ge k$ |  |
| bound                 | at most k out of n    | $\sum_{i=1}^{n} \delta_i \le k$ |  |

## 2.3 Modeling non-linear functions with binary variables



#### set-up value:

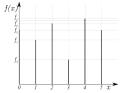
$$f: [0, U] \subseteq \mathbb{R}_+ \to \mathbb{R}_+$$

$$f(x) = \begin{cases} 0 & \text{if } x = 0 \\ ax + b & \text{if } 0 < x \le 0 \end{cases}$$

$$f(x) = ax + b\delta$$

$$\epsilon \delta \le x \le U\delta$$

$$\delta \in \{0, 1\}$$



#### discrete value:

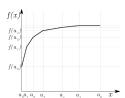
$$f(x) = f_i \text{ if } x = i$$

$$f(x) = \sum_i \delta_i f_i$$

$$\sum_i i \delta_i = x$$

$$\sum_i \delta_i = 1$$

$$\delta_i \in \{0, 1\} \ i = 0...n$$



## piecewise linear:

$$f(x) = \sum_{i} \lambda_{i} f(a_{i})$$
  
$$\sum_{i} a_{i} \lambda_{i} = x$$
  
$$\sum_{i} \lambda_{i} = 1$$
  
$$\lambda_{i} \in [0, 1] \ i = 0..n$$
  
with  $SOS2(\lambda_{i})$