
the MILP way

Sophie Demassey

a practical view

 1

Combinatorics everywhere

 2

1how to model ?

2how difficult ?

3how to solve ?

 3

1how to model ?

2how difficult ?

3how to solve ?

 4



modeling with !
 5

- is item j selected ?  

- is item j associated to item i ?  

- is non-negative x greater than a ? 

- is constraint c satisfied ? 

true or false
X

=

x j ∈ {0,1}
∈

yi j ∈ {0,1}

∈

x ≥ ay, y ∈ {0,1}

01

…

in an optimal solution…

 6

Input n items, value cj and 

weight wj for each item j, 

capacity K. 

Output a maximum value subset of 

items whose total weight does not 

exceed K.

Integer Knapsack 
Problem

xj is item j packed ?  7

Input n items, value cj and 

weight wj for each item j, 

capacity K. 

Output a maximum value subset of 

items whose total weight does not 

exceed K.

Integer Knapsack 
Problem

max
nX

j=1

c j x j

s.t.
nX

j=1

w j x j ≤ K

x j ∈ {0,1} j = 1..n

xj is item j packed ?  7



- either x or y 

- if x then y 

- if x then f ≤ a 

- at most 1 out of n 

- at least k out of n

logic with binaries

∈

x + y = 1
+ =

y ≥ x

≥

x1 +·· ·+xn ≤ 1
+·· ·+ ≤

x1 +·· ·+xn ≥ k

f ≤ ax +M(1−x) “big M”

 8

Input n facility locations, m 

customers, cost cj to open facility 

j, cost dij to serve customer i from 

facility j 

Output a mimimum (opening and 

service) cost assignment of 

customers to facilities. 

Uncapacitated 
Facility Location 

Problem

xj is location j open ? yij is customer i served from j ? 9

Input n facility locations, m 

customers, cost cj to open facility 

j, cost dij to serve customer i from 

facility j 

Output a mimimum (opening and 

service) cost assignment of 

customers to facilities. 

Uncapacitated 
Facility Location 

Problem
min

nX

j=1

c j x j +

nX

j=1

mX

i=1

di j yi j

s.t.
nX

j=1

yi j = 1 i = 1..m

yi j ≤ x j j = 1..n, i = 1..m

x j ∈ {0,1} j = 1..n

yi j ∈ {0,1} j = 1..n, i = 1..m

xj is location j open ? yij is customer i served from j ? 9

1||Cmax Scheduling 
Problem

Input n tasks, duration pi for 

each task i, one machine  

Output a minimal makespan 

schedule of the tasks on the 

machine without overlap 

xij does i precede j ? sj starting time of j 10



1||Cmax Scheduling 
Problem

Input n tasks, duration pi for 

each task i, one machine  

Output a minimal makespan 

schedule of the tasks on the 

machine without overlap 

min sn+1

s.t. sn+1 ≥ s j +p j j = 1..n

s j − si ≥ M xi j + (pi −M) i , j = 1..n

xi j +x j i = 1 i , j = 1..n; i < j

s j ∈Z+ j = 1..n +1

xi j ∈ {0,1} i , j = 1..n

xij does i precede j ? sj starting time of j 10

non-linear functions

setup value

piecewise linear

discrete values

 11

setup value

f (x) = ax +b±

≤±≤ x ≤U±

± ∈ {0,1}

U"

# is x positive ?  12

discrete values
= =

f (x) =
P

i ±i fi
P

i i±i = x
P

i ±i = 1

±i ∈ {0,1} i = 0..n

#i is x=i (and f(x)=fi) ?  13



discrete values
= =

f (x) =
P

i ±i fi
P

i i±i = x
P

i ±i = 1

±i ∈ {0,1} i = 0..n

Special Ordered Set of type 1:  
ordered set of variables, all zero except at most one

#i is x=i (and f(x)=fi) ?

SOS1($)

≥

 13

piecewise linear

Special Ordered Set of type 2:  
ordered set of variables, all zero except at most two consecutive

%i is x=ai ? (then &iai +&i+1ai+1 in [ai,ai+1] if &i +&i+1 =1)

SOS2(%)

 14

Input n data points, distance dij 

between each two points i,j, 

number k of clusters. 

Output k centers minimizing the 

sum of distances between each 

point and its nearest center.

K-median clustering

yj is j a center ? xij is j the nearest center of i ? 15

Input n data points, distance dij 

between each two points i,j, 

number k of clusters. 

Output k centers minimizing the 

sum of distances between each 

point and its nearest center.

K-median clustering

yj is j a center ? xij is j the nearest center of i ? 15



modeling with ℤ
 16

xi = 5

to order  i is the 5th item 

to count  5 items are selected 

to measure time   task i starts at time 5 

to measure space item i is located on floor 5

≃ $i5 = 1
 17

Binary Integer Linear Program (BIP)    {0,1}n 

Integer Linear Program (IP)     ℤn 

Mixed Integer Linear Program (MIP)       ℤn  U Qn

 18

Input 1 company, 2 divisions, m 

products with availabilities dj, n 

retailers with demands aij in each 

product j. 

Output an assignment of the retailers 

to the divisions approaching a 50/50 

production split.

1
Market Split Problem

Interlude

 19



Input 1 company, 2 divisions, m 

products with availabilities dj, n 

retailers with demands aij in each 

product j. 

Output an assignment of the retailers 

to the divisions approaching a 50/50 

production split.

1
Market Split Problem

Interlude

min
mX

j=1

s+j + s−j

s.t.
nX

i=1

ai j xi + s+j − s−j =

d j

2
j = 1..m

xi ∈ {0,1} i = 1..n

s+j ≥ 0, s−j ≥ 0 j = 1..m

xi is retailer i assigned to division 1 ?  

sj gap to the 50% split goal for product j 19

1how to model ?

2how difficult ?

3how to solve ?

 20

Input 5 products, 40 retailers 

Output . . . . . . . . . . . . . . . 

. . . (hold the line please) . . . .  

Int Opt = 1 

Solution time = 20 minutes 

Proof time = > 1 hour 

MIPLIB markshare_5_0

 21

Input 5 products, 40 retailers 

Output . . . . . . . . . . . . . . . 

. . . (hold the line please) . . . .  

Int Opt = 1 

Solution time = 20 minutes 

Proof time = > 1 hour 

MIPLIB markshare_5_0

 21



LP ≠ ILP

 22

round LP ≠ ILP

 23

“ILP is NP-hard: I can’t solve it !”

 24

1||Cmax Scheduling 
Problem

Input n tasks, duration pi for 

each task i, one machine  

Output a minimal makespan 

schedule of the tasks on the 

machine without overlap 

min sn+1

s.t. sn+1 ≥ s j +p j j = 1..n

s j − si ≥ M xi j + (pi −M) i , j = 1..n

xi j +x j i = 1 i , j = 1..n; i < j

s j ∈Z+ j = 1..n +1

xi j ∈ {0,1} i , j = 1..n

= p1+…+pn

≥ 0

 25



Input digraph (V,A), demand or 

supply bi at each node i, 

capacity hij and unit flow cost 

cij for each arc (i,j) 

Output a mimimum cost integer 

flow to satisfy the demand 

Capacitated 
Transhipment 

Problem

xij flow on arc (i,j) 26

Input digraph (V,A), demand or 

supply bi at each node i, 

capacity hij and unit flow cost 

cij for each arc (i,j) 

Output a mimimum cost integer 

flow to satisfy the demand 

Capacitated 
Transhipment 

Problem
min

X

(i , j )∈A

ci j xi j

s.t.
X

j∈δ+(i )

xi j −
X

j∈δ−(i )

xi j = bi i ∈V

xi j ≤ hi j (i , j ) ∈ A

xi j ∈Z+ (i , j ) ∈ A≥ 0

xij flow on arc (i,j) 26

LP = ILP

 27

LP = ILP

integral polyhedra 
= 

convex hull 
= 

ideal formulation

 27



totally unimodular matrix

(P ) = max{ cx | Ax ≤ b, x ∈ Z
n

+ }

basic feasible solutions of the LP relaxation (P̄ ) take the form:
x̄ = (x̄B , x̄N ) = (B−1b, 0) where B is a square submatrix of (A, Im)

Cramer’s rule: B−1 = B∗/det(B) where B∗ is the adjoint matrix
(made of products of terms of B)

Proposition: if (P ) has integral data (A, b) and if det(B) = ±1 then x̄
is integral

Definition

A matrix A is totally unimodular (TU) if every square submatrix has
determinant +1, −1 or 0.

Proposition

If A is TU and b is integral then any optimal solution of (P̄ ) is integral.

(theory)

 28

totally unimodular matrix

How to recognize TU ?

Sufficient condition

A matrix A is TU if

all the coefficients are +1, −1 or 0

each column contains at most 2 non-zero coefficient

there exists a partition (M1,M2) of the set M of rows such that
each column j containing two non zero coefficients satisfies
P

i∈M1
aij −

P

i∈M2
aij = 0.

Proposition

A is TU ⇐⇒ At is TU ⇐⇒ (A, Im) is TU
where At is the transpose matrix, Im the identitiy matrix

(practice)

 29

Show that the Transhipment ILP is ideal 
Show that theScheduling ILP is NOT ideal 

2Interlude

 30

1how to model ?

2how difficult ?

3how to solve ?
 31



4
3
2
1Cuts            compute an ideal formulation and solve the LP

Branch&Bound        enumerate solutions implicitely                                                       

modern Branch&Cut mix up+presolve +heuristics

decomposition methods                                (Branch&Price, Lagrangian, Benders)
 32

Cutting Plane Algorithm
 33

Cut valid inequality that separates the LP solution 

Farkas Lemma any cut is a linear combination of the constraints 
 34

cutting plane algorithm

1. solve the LP relaxation (P), get x* 

2. if x* is integral, STOP 

3. find a cut for (P,x*) from a template T

 35



templates

generic

structural

problem-specific

Gomory Mixed Integer, Mixed Integer Rounding, Split, Chvátal-Gomory

clique, cover, flow cover, zero half

subtour elimination (TSP), odd-set (matching)

 36

ex1 Mixed Integer Rounding

Combining constraints, then rounding leads to valid inequalities.

Let u ⌃ R
m
+ , then the following inequalities are valid for (P ):

surrogate:
Pm

j=1
ujaijxi ⌅

Pm

j=1
ujbj (since u ⇧ 0)

round off:
Pm

j=1
↵ujaij�xi ⌅

Pm

j=1
ujbj (since ↵ujaij� ⌅ ujaij and

x ⇧ 0)

Chvátal-Gomory:
Pm

j=1
↵ujaij�xi ⌅ ↵

Pm

j=1
ujbj� (since e ⌃ Z and

e ⌅ f implies that e ⌅ ↵f�)

CG inequalities form a generic class of valid inequalities: they
apply to any IP

conversely, we can prove that any valid inequality for any IP is of

 37

ex2Cover
Cover inequalities

S = {y ⌃ {0, 1}7|11y1 + 6y2 + 6y3 + 5y4 + 5y5 + 4y6 + y7 ⌅ 19}

(y3, y4, y5, y6) is a minimal cover for
11y1 + 6y2 + 6y3 + 5y4 + 5y5 + 4y6 + y7 ⌅ 19 as 6 + 5+ 5+ 4 > 19 then
y3 + y4 + y5 + y6 ⌅ 3 is a cover inequality

we can derive a stronger valid inequality
y1 + y2 + y3 + y4 + y5 + y6 ⌅ 3 by noting that y1, y2 has greater
coefficients than any variable in the cover

note furthermore that (y1, yi, yj) is a cover �i ⌥= j ⌃ {2, 3, 4, 5, 6}
then 2y1 + y2 + y3 + y4 + y5 + y6 ⌅ 3 is also valid

The procedure to get this last equality is called lifting

 38

ex3Subtour for TSP

 39



ex3Subtour for TSP

min
X

e2E

ce xe

s.t.
X

e2E |i2e

xe = 2 i 2V

X

δ(Q)

xe ∏ 2 ;(Q (V

xe 2 {0,1} e 2 E

 39

ex3Subtour for TSP

 40

limits depending on the cut families

- the algorithm may stop prematurely 

- the algorithm may not converge 

- the algorithm may converge slowly 

- the separation procedure may be NP-hard 

- the LP grows 

- the LP structure changes 

 41

Branch and Bound

 42



Search tree

 43

LP-based B&B

oracle(S) = FALSE iff either:  

- LP is infeasible  

- the fractional solution x 

is not better than the 

incumbent x* 

- x is integer (update x*)

then prune node S

 44

 45

branching

node selection

variable selection

which order to visit nodes ?

how to separate nodes ?

constraint branching
alternative to variable branching

 46



node selection

Best Bound First Search explore less nodes, manages larger trees 

Depth First Search sensible to bad decisions at or near the root 

DFS (up to n solutions) + BFS (to prove optimality)
 47

variable selection

most fractional easy to implement but not better than random 

strong branching best improvement among all candidates (impractical) 

pseudocost branching record previous branching success for each var (inaccurate at root) 

reliability branching pseudocosts initialised with strong branching
 48

variable selection

most fractional easy to implement but not better than random 

strong branching best improvement among all candidates (impractical) 

pseudocost branching record previous branching success for each var (inaccurate at root) 

reliability branching pseudocosts initialised with strong branching
 48

constraint branching 

example: GUB dichotomy

if (P ) contains a GUB constraint
�

C
xi = 1, x ⇧ {0, 1}n

choose C⇤ ⇥ C s.t. 0 <
�

C0 x̄i < 1

create two child nodes by setting either
�

C0 xi = 0 or
�

C0 xi = 1

enforced by fixing the variable values

leads to more balanced search trees

SOS1 branching in a facility location problem

choose a warehouse depending on its size/cost:

COST = 100x1 + 180x2 + 320x3 + 450x4 + 600x5

SIZE = 10x1 + 20x2 + 40x3 + 60x4 + 80x5

(SOS1) : x1 + x2 + x3 + x4 + x5 = 1

let x̄1 = 0.35 and x̄5 = 0.65 in the LP solution then SIZE= 55.5

choose C� = {1, 2, 3} in order to model SIZE≤ 40 or SIZE≥ 60
 49



modern solvers
 50

Branch & Cut

Simplex
var branching

Heuristics
Parallelism

Preprocessing

 51

Slide from Martin Grötschel Co@W Berlin 2015 52
© 2013 IBM Corporation

Component Impact CPLEX 12.5 Summary

Benchmarking setup

• 1769 models
• 12 core Intel Xenon 2.66 GHz
• Unbiased: At least one of all the

test runs took at least 10sec

99% 82% 91% 26%93%91% 46%83% 65%% affected

12
 53



CPLEX 12.7 GUROBI 7.5

 54

Preprocessing           reduce size 
remove redundancies     x+y≤3, binaries  

substitute variables       x+y-z=0 

fix variables by duality   cj≥0, Aj≥0 ⇒ x=xmin 

fix variables by probing  x=1 infeas ⇒ x=0 

          strengthen LP relaxation 
         adjust bounds   2x+y≤1, binaries ⇒ x=0 

          lift coefficients   2x-y≤1, binaries ⇒ x-y≤1   

      identify/exploit properties 
         detect implied integer 3x+y=7, x int ⇒ y int 

           build the conflict graph  
           detect disconnected components 
           remove symmetries

 55

Input 5 products, 40 retailers 

Output . . . . . . . . . . . . . . . 

. . . (hold the line please) . . . .  

Int Opt = 1 

Solution time = 20 minutes 

Proof time = > 1 hour 

MIPLIB markshare_5_0

 56

Input 5 products, 40 retailers 

Output . . . . . . . . . . . . . . . 

. . . (hold the line please) . . . .  

Int Opt = 1 

Solution time = 20 minutes 

Proof time = > 1 hour 

MIPLIB markshare_5_0

x39 1
[sofdem:~/Documents/Code/gurobi]$ gurobi.sh mymip.py markshare_5_0.mps.gz
Optimize a model with 5 rows, 45 columns and 203 nonzeros
Found heuristic solution: objective 5335
Presolve time: 0.00s
Presolved: 5 rows, 45 columns, 203 nonzeros
Variable types: 0 continuous, 45 integer (40 binary)

Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0    0.00000    0    5 5335.00000    0.00000   100%     -    0s
H    0     0                     320.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
H    0     0                     239.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    5  239.00000    0.00000   100%     -    0s
*   36     0              29      96.0000000    0.00000   100%   2.7    0s
*   99    32              34      58.0000000    0.00000   100%   2.1    0s
H  506   214                      53.0000000    0.00000   100%   1.9    0s
H30682   442                       1.0000000    1.00000  0.00%   2.1    0s

Cutting planes:
  Cover: 26

Explored 30682 nodes (65348 simplex iterations) in 0.70 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.000000000000e+00, best bound 1.000000000000e+00, gap 0.0%
Optimal objective: 1

 56



Primal Heuristics

accelerate the search a little 
appeal to the practitioner a lot

rounding LP solution 
diving at some nodes 

local search in the incumbent neighbourhood

 57

limits

- highly heuristic (branching decisions, cut generation)  

- floating-point errors  and optimality tolerance (0.01%) 

- generic features 

- less effective on general integers (ex: scheduling) 

- hard to model (and solve) non-linear structures 

- NP-hard 

 58

how to tune 
modern solvers 
play with Gurobi

 59

use as a heuristic
set a time limit  
MIPFocus=1 
ImproveStartGap=0.1

Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0    0.00000    0    5 5335.00000    0.00000   100%     -    0s
H    0     0                     320.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
H    0     0                     239.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    5  239.00000    0.00000   100%     -    0s
*   36     0              29      96.0000000    0.00000   100%   2.7    0s
*   99    32              34      58.0000000    0.00000   100%   2.1    0s
H  506   214                      53.0000000    0.00000   100%   1.9    0s
H30682   442                       1.0000000    1.00000  0.00%   2.1    0s

 60



change the LP solver
if nbIteration(node) ≥  nbIteration(root)/2 
NodeMethod=2

Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0    0.00000    0    5 5335.00000    0.00000   100%     -    0s
H    0     0                     320.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
H    0     0                     239.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    5  239.00000    0.00000   100%     -    0s
*   36     0              29      96.0000000    0.00000   100%   2.7    0s
*   99    32              34      58.0000000    0.00000   100%   2.1    0s
H  506   214                      53.0000000    0.00000   100%   1.9    0s
H30682   442                       1.0000000    1.00000  0.00%   2.1    0s

 61

supply a feasible solution
if built-in heuristics fail 
PumpPasses,MinRelNodes,ZeroObjNodes 

model.read(‘initSol.mst’) 

model.cbSetSolution(vars, newSol)

Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0    0.00000    0    5 5335.00000    0.00000   100%     -    0s
H    0     0                     320.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
H    0     0                     239.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    5  239.00000    0.00000   100%     -    0s
*   36     0              29      96.0000000    0.00000   100%   2.7    0s
*   99    32              34      58.0000000    0.00000   100%   2.1    0s
H  506   214                      53.0000000    0.00000   100%   1.9    0s
H30682   442                       1.0000000    1.00000  0.00%   2.1    0s

 62

tighten the model
if the bound stagnates 
Cuts=3 

Presolve=3 

model.cbCut(lhs, sense, rhs)

Root relaxation: objective 0.000000e+00, 15 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0    0.00000    0    5 5335.00000    0.00000   100%     -    0s
H    0     0                     320.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    6  320.00000    0.00000   100%     -    0s
     0     0    0.00000    0    5  320.00000    0.00000   100%     -    0s
H    0     0                     239.0000000    0.00000   100%     -    0s
     0     0    0.00000    0    5  239.00000    0.00000   100%     -    0s
*   36     0              29      96.0000000    0.00000   100%   2.7    0s
*   99    32              34      58.0000000    0.00000   100%   2.1    0s
H  506   214                      53.0000000    0.00000   100%   1.9    0s
H30682   442                       1.0000000    1.00000  0.00%   2.1    0s

 63

/documentation/8.0/refman/mip_models

/resources/seminars-and-videos

http://www.gurobi.com/

 64



you know your problem better 
than your solver does

 65

improve
your

model
 66

Input n facility locations, m 

customers, cost cj to open facility 

j, cost dij to serve customer i from 

facility j 

Output a mimimum (opening and 

service) cost assignment of 

customers to facilities. 

Uncapacitated 
Facility Location 

Problem

min
nX

j=1

c j x j +

nX

j=1

mX

i=1

di j yi j

s.t.
nX

j=1

yi j = 1 i = 1..m

yi j ≤ x j j = 1..n, i = 1..m

x j ∈ {0,1} j = 1..n

yi j ∈ {0,1} j = 1..n, i = 1..m

 67

Input n facility locations, m 

customers, cost cj to open facility 

j, cost dij to serve customer i from 

facility j 

Output a mimimum (opening and 

service) cost assignment of 

customers to facilities. 

Uncapacitated 
Facility Location 

Problem

min
nX

j=1

c j x j +

nX

j=1

mX

i=1

di j yi j

s.t.
nX

j=1

yi j = 1 i = 1..m

yi j ≤ x j j = 1..n, i = 1..m

x j ∈ {0,1} j = 1..n

yi j ∈ {0,1} j = 1..n, i = 1..m

min
nX

j=1

c j x j +

nX

j=1

mX

i=1

di j yi j

s.t.
nX

j=1

yi j = 1 i = 1..m

mX

i=1

yi j ∑ mx j j = 1..n

x j 2 {0,1} j = 1..n

yi j 2 {0,1} j = 1..n, i = 1..m

14 hours

2 seconds

m=n=40  67



Input n time periods, fixed production 

cost ft, unit production cost pt, unit 

storage cost ht, demand dt for each 

period t 

Output a mimimum (production and 

storage) cost production plan to 

satisfy the demand 

Uncapacitated Lot 
Sizing Problem

 68

Input n time periods, fixed production 

cost ft, unit production cost pt, unit 

storage cost ht, demand dt for each 

period t 

Output a mimimum (production and 

storage) cost production plan to 

satisfy the demand 

Uncapacitated Lot 
Sizing Problem

min
nX

t=1

ft yt +

nX

t=1

pt xt +

nX

t=1

ht st

s.t. st°1 +xt = dt + st t = 1..n

xt ∑ M yt t = 1..n

yt 2 {0,1} t = 1..n

st , xt ∏ 0 t = 1, . . . ,n

s0 = 0

zit production in period i to satisfy demand of period t 68

Input n time periods, fixed production 

cost ft, unit production cost pt, unit 

storage cost ht, demand dt for each 

period t 

Output a mimimum (production and 

storage) cost production plan to 

satisfy the demand 

Uncapacitated Lot 
Sizing Problem

min
nX

t=1

ft yt +

nX

i=1

nX

t=i

pi zi t +

nX

i=1

nX

t=i+1

t°1X

j=i

h j zi t

s.t.
tX

i=1

zi t = dt t = 1..n

zi t ∑ dt yi i = 1..n; t = i ..n

yt 2 {0,1} t = 1..n

zi t ∏ 0 i = 1..n; t = i ..n

zit production in period i to satisfy demand of period t 68

Input n time periods, fixed production 

cost ft, unit production cost pt, unit 

storage cost ht, demand dt for each 

period t 

Output a mimimum (production and 

storage) cost production plan to 

satisfy the demand 

Uncapacitated Lot 
Sizing Problem

min
nX

t=1

ft yt +

nX

i=1

nX

t=i

pi zi t +

nX

i=1

nX

t=i+1

t°1X

j=i

h j zi t

s.t.
tX

i=1

zi t = dt t = 1..n

zi t ∑ dt yi i = 1..n; t = i ..n

yt 2 {0,1} t = 1..n

zi t ∏ 0 i = 1..n; t = i ..n

zit production in period i to satisfy demand of period t

LP=ILP

 68



Input n containers, m items, 

capacity c for all containers, 

weight wj for each item j 

Output a packing of all items in 

a mimimum number of containers 

Bin Packing Problem

 69

Input n containers, m items, 

capacity c for all containers, 

weight wj for each item j 

Output a packing of all items in 

a mimimum number of containers 

Bin Packing Problem
min

nX

i=1

yi

s.t.
mX

j=1

w j xi j ∑ c yi i = 1..n

nX

i=1

xi j = 1 j = 1..m

xi j 2 {0,1} i = 1..n; j = 1..m

yi 2 {0,1} i = 1..n

all the possible arrangements of items in a bin 69

Input n containers, m items, 

capacity c for all containers, 

weight wj for each item j 

Output a packing of all items in 

a mimimum number of containers 

Bin Packing Problem
min

X

s2S

xs

s.t.
X

s2S

a j s xs = 1 j = 1..n

xs 2 {0,1} s 2S

all the possible arrangements of items in a bin

delayed column generation

 69

Input n items, m bins, value cj 

and weight wj for each item j, 

capacity Ki for each bin i. 

Output a maximum value subset of 

items packed in the bins.

Multi 0-1 Knapsack 
Problem

 70



Input n items, m bins, value cj 

and weight wj for each item j, 

capacity Ki for each bin i. 

Output a maximum value subset of 

items packed in the bins.

Multi 0-1 Knapsack 
Problem

max
mX

i=1

nX

j=1

c j xi j

s.t.
nX

j=1

w j xi j ∑ Ki i = 1..m

mX

i=1

xi j ∑ 1 j = 1..n

xi j 2 {0,1} j = 1..n, i = 1..m

 70

Input n items, m bins, value cj 

and weight wj for each item j, 

capacity Ki for each bin i. 

Output a maximum value subset of 

items packed in the bins.

Multi 0-1 Knapsack 
Problem

min zπ

s.t. πi ∏ 0 i = 1..m

zπ = max
mX

i=1

nX

j=1

c j xi j °

mX

i=1

πi (
nX

j=1

w j xi j °Ki )

s.t.
mX

i=1

xi j ∑ 1 j = 1..n

xi j 2 {0,1} j = 1..n, i = 1..m

lagrangian relaxation

 70

MIP advantages

maintainability

transparency

extensibility

performance

 71

but if all else fails

constraint programming

non-linear programming

metaheuristics

SAT

 72



Achterberg T., Berthold T., Hendel G. (2012) Rounding and propagation heuristics for MIP. In OR Proceedings 2011, 71-76. 
Achterberg T., Bixby R., Gu Z., Rothberg E., Weninger D. (2016) Presolve reductions in MIP. ZIB-Report 16-44. 
Bixby R. (2012) A brief history of LP and MIP computation. Documenta Mathematica, 107-121. 
Cornuéjols G. (2008) Valid inequalities for MILP. Mathematical Programming, 112(1), 3-44. 
Klotz E., Newman A. (2013) Practical guidelines for solving difficult MILP. Surveys in ORMS, 18(1), 18-32. 
Linderoth J., Ralphs T. (2005) Noncommercial software for MILP. IP: theory and practice, 3, 253-303. 
Linderoth J., Lodi A. (2010) MILP software. Wiley encyclopedia of ORMS. 
Linderoth J., Savelsbergh M. (1999) A computational study of search strategies for MIP. INFORMS JoC, 11(2), 173-187. 
Lodi A. (2010) MIP computation. In 50 Years of IP 1958-2008, 619-645. 
Newman A., Weiss M. (2013) A survey of linear and mixed-integer optimization tutorials. INFORMS ToE, 14(1) 26-38. 
Savelsbergh M. (1994) Preprocessing and probing techniques for MIP. ORSA Journal on Computing, 6(4), 445-454. 
Vanderbeck F., Wolsey L. (2010) Reformulation and decomposition of IP. In 50 Years of IP 1958-2008, 431-502.  

Wolsey L. (1998) Integer Programming. Wiley 
 

 73


