4.3.4.6. two parameters/two final graphs

πŒπ€π—_𝐍𝐂𝐂 1 , 𝐌𝐈𝐍_𝐍𝐂𝐂 1

Proposition 125

πšŸπš™πšŠπš›πšπš’πšπš’πš˜πš—βˆ§πšŒπš˜πš—πšœπšŽπšŒπšžπšπš’πšŸπšŽ_πš•πš˜πš˜πš™πšœ_πšŠπš›πšŽ_πšŒπš˜πš—πš—πšŽπšŒπšπšŽπš:𝐌𝐈𝐍_𝐍𝐂𝐂 1 βˆ‰ππ•π„π‘π“π„π— π™Έπ™½π™Έπšƒπ™Έπ™°π™» -πŒπ€π—_𝐍𝐂𝐂 1 ,πŒπ€π—_𝐍𝐂𝐂 1 -1

Proof 123 We show that the conjunction 𝐌𝐈𝐍_𝐍𝐂𝐂 1 β‰₯𝐍𝐕𝐄𝐑𝐓𝐄𝐗 π™Έπ™½π™Έπšƒπ™Έπ™°π™» -πŒπ€π—_𝐍𝐂𝐂 1 and 𝐌𝐈𝐍_𝐍𝐂𝐂 1 β‰€πŒπ€π—_𝐍𝐂𝐂 1 -1 leads to a contradiction.

Since 𝐌𝐈𝐍_𝐍𝐂𝐂 1 β‰€πŒπ€π—_𝐍𝐂𝐂 1 -1 we have that 𝐌𝐈𝐍_𝐍𝐂𝐂 1 β‰ πŒπ€π—_𝐍𝐂𝐂 1 and the minimum required size for the different groups is 𝐌𝐈𝐍_𝐍𝐂𝐂 1 +1+πŒπ€π—_𝐍𝐂𝐂 1 . This minimum required size should not exceed the number of vertices 𝐍𝐕𝐄𝐑𝐓𝐄𝐗 π™Έπ™½π™Έπšƒπ™Έπ™°π™» of the initial graph. But since, by hypothesis, 𝐌𝐈𝐍_𝐍𝐂𝐂 1 β‰₯𝐍𝐕𝐄𝐑𝐓𝐄𝐗 π™Έπ™½π™Έπšƒπ™Έπ™°π™» -πŒπ€π—_𝐍𝐂𝐂 1 , this is impossible.

πŒπ€π—_𝐍𝐂𝐂 2 , 𝐌𝐈𝐍_𝐍𝐂𝐂 2

Proposition 126

πšŸπš™πšŠπš›πšπš’πšπš’πš˜πš—βˆ§πšŒπš˜πš—πšœπšŽπšŒπšžπšπš’πšŸπšŽ_πš•πš˜πš˜πš™πšœ_πšŠπš›πšŽ_πšŒπš˜πš—πš—πšŽπšŒπšπšŽπš:𝐌𝐈𝐍_𝐍𝐂𝐂 2 βˆ‰ππ•π„π‘π“π„π— π™Έπ™½π™Έπšƒπ™Έπ™°π™» -πŒπ€π—_𝐍𝐂𝐂 2 ,πŒπ€π—_𝐍𝐂𝐂 2 -1

Proof 124 Similar to PropositionΒ 125.

πŒπ€π—_𝐍𝐂𝐂 1 , 𝐍𝐂𝐂 2

Proposition 127

πšŸπš™πšŠπš›πšπš’πšπš’πš˜πš—:πŒπ€π—_𝐍𝐂𝐂 1 <𝐍𝐕𝐄𝐑𝐓𝐄𝐗 π™Έπ™½π™Έπšƒπ™Έπ™°π™» ⇔𝐍𝐂𝐂 2 >0

πšŠπš™πšŠπš›πšπš’πšπš’πš˜πš—:πŒπ€π—_𝐍𝐂𝐂 1 <𝐍𝐕𝐄𝐑𝐓𝐄𝐗 π™Έπ™½π™Έπšƒπ™Έπ™°π™» ⇔𝐍𝐂𝐂 2 >0

Proof 125 (186) Since we have the precondition πšŸπš™πšŠπš›πšπš’πšπš’πš˜πš—, we know that each vertex of the initial graph belongs to the first or to the second final graphs (but not to both).

  1. On the one hand, if the largest connected component of the first final graph cannot contain all the vertices of the initial graph, then the second final graph has at least one connected component.

  2. On the other hand, if the second final graph has at least one connected component then the largest connected component of the first final graph cannot be equal to the initial graph.

(187) holds for a similar reason.

πŒπ€π—_𝐍𝐂𝐂 2 , 𝐍𝐂𝐂 1

Proposition 128

πšŸπš™πšŠπš›πšπš’πšπš’πš˜πš—:πŒπ€π—_𝐍𝐂𝐂 2 <𝐍𝐕𝐄𝐑𝐓𝐄𝐗 π™Έπ™½π™Έπšƒπ™Έπ™°π™» ⇔𝐍𝐂𝐂 1 >0

πšŠπš™πšŠπš›πšπš’πšπš’πš˜πš—:πŒπ€π—_𝐍𝐂𝐂 2 <𝐍𝐕𝐄𝐑𝐓𝐄𝐗 π™Έπ™½π™Έπšƒπ™Έπ™°π™» ⇔𝐍𝐂𝐂 1 >0

Proof 126 Similar to PropositionΒ 127.

𝐌𝐈𝐍_𝐍𝐂𝐂 1 , 𝐍𝐂𝐂 2

Proposition 129

πšŸπš™πšŠπš›πšπš’πšπš’πš˜πš—:𝐌𝐈𝐍_𝐍𝐂𝐂 1 <𝐍𝐕𝐄𝐑𝐓𝐄𝐗 π™Έπ™½π™Έπšƒπ™Έπ™°π™» ⇔𝐍𝐂𝐂 2 >0

Proof 127 Since we have the precondition πšŸπš™πšŠπš›πšπš’πšπš’πš˜πš—, we know that each vertex of the initial graph belongs to the first or to the second final graphs (but not to both).

  1. On the one hand, if the smallest connected component of the first final graph cannot contain all the vertices of the initial graph, then the second final graph has at least one connected component.

  2. On the other hand, if the second final graph has at least one connected component then the smallest connected component of the first final graph cannot be equal to the initial graph.

𝐌𝐈𝐍_𝐍𝐂𝐂 2 , 𝐍𝐂𝐂 1

Proposition 130

πšŸπš™πšŠπš›πšπš’πšπš’πš˜πš—:𝐌𝐈𝐍_𝐍𝐂𝐂 2 <𝐍𝐕𝐄𝐑𝐓𝐄𝐗 π™Έπ™½π™Έπšƒπ™Έπ™°π™» ⇔𝐍𝐂𝐂 1 >0

Proof 128 Similar to PropositionΒ 129.

𝐍𝐀𝐑𝐂 1 , 𝐍𝐀𝐑𝐂 2

Proposition 131

πšŠπš™πšŠπš›πšπš’πšπš’πš˜πš—βˆ§πšπ«πœ_𝐠𝐞𝐧=𝑃𝐴𝑇𝐻:𝐍𝐀𝐑𝐂 1 +𝐍𝐀𝐑𝐂 2 =𝐍𝐕𝐄𝐑𝐓𝐄𝐗 π™Έπ™½π™Έπšƒπ™Έπ™°π™» -1

Proof 129 Holds since each arc of the initial graph belongs to one of the two final graphs and since the initial graph has 𝐍𝐕𝐄𝐑𝐓𝐄𝐗 π™Έπ™½π™Έπšƒπ™Έπ™°π™» -1 arcs.

𝐍𝐂𝐂 1 , 𝐍𝐂𝐂 2

Proposition 132

πšŠπš™πšŠπš›πšπš’πšπš’πš˜πš—βˆ§πšπ«πœ_𝐠𝐞𝐧=𝑃𝐴𝑇𝐻:|𝐍𝐂𝐂 1 -𝐍𝐂𝐂 2 |≀1

πšŸπš™πšŠπš›πšπš’πšπš’πš˜πš—βˆ§πšŒπš˜πš—πšœπšŽπšŒπšžπšπš’πšŸπšŽ_πš•πš˜πš˜πš™πšœ_πšŠπš›πšŽ_πšŒπš˜πš—πš—πšŽπšŒπšπšŽπš:|𝐍𝐂𝐂 1 -𝐍𝐂𝐂 2 |≀1

Proof 130 Holds because the two initial graphs correspond to a path and because consecutive connected components do not come from the same graph constraint.

Proposition 133

πšŠπš™πšŠπš›πšπš’πšπš’πš˜πš—βˆ§πšπ«πœ_𝐠𝐞𝐧=𝑃𝐴𝑇𝐻:𝐍𝐂𝐂 1 +𝐍𝐂𝐂 2 <𝐍𝐕𝐄𝐑𝐓𝐄𝐗 π™Έπ™½π™Έπšƒπ™Έπ™°π™»

Proof 131 Holds because the initial graph is a path.

𝐍𝐕𝐄𝐑𝐓𝐄𝐗 1 , 𝐍𝐕𝐄𝐑𝐓𝐄𝐗 2

Proposition 134

πšŸπš™πšŠπš›πšπš’πšπš’πš˜πš—:𝐍𝐕𝐄𝐑𝐓𝐄𝐗 1 +𝐍𝐕𝐄𝐑𝐓𝐄𝐗 2 =𝐍𝐕𝐄𝐑𝐓𝐄𝐗 π™Έπ™½π™Έπšƒπ™Έπ™°π™»

Proof 132 By definition of πšŸπš™πšŠπš›πšπš’πšπš’πš˜πš— each vertex of the initial graph belongs to one of the two final graphs (but not to both).