### 4.4.3. Functional dependency invariants involving four constraints

Proposition 196 Given the constraints

$\mathrm{\pi ½\pi  \pi °\pi »}>1\beta 2Β·\mathrm{\pi Ώ}\beta €|\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }|-max\left(1,\mathrm{\pi »\pi ΄\pi ½}_\mathrm{\pi ΅\pi Έ\pi \pi \pi }\right)-max\left(1,\mathrm{\pi »\pi ΄\pi ½}_\mathrm{\pi »\pi °\pi \pi }\right)+1$

Proof 194 Beside the first and the last sequence with a small value, we alternate between large and small values.

Proposition 197 Given the constraints

$\mathrm{\pi ½\pi  \pi °\pi »}>1\beta 2Β·\mathrm{\pi  }\beta €|\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }|-max\left(1,\mathrm{\pi »\pi ΄\pi ½}_\mathrm{\pi ΅\pi Έ\pi \pi \pi }\right)-max\left(1,\mathrm{\pi »\pi ΄\pi ½}_\mathrm{\pi »\pi °\pi \pi }\right)+1$

Proof 195 Beside the first and the last sequence with a large value, we alternate between small and large values.