## 5.390. sum_powers5_ctr

Origin

Arithmetic constraint.

Constraint

Synonyms

, , .

Arguments
 $\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }$ $\mathrm{\pi \pi \pi \pi \pi \pi \pi \pi \pi \pi }\left(\mathrm{\pi \pi \pi }-\mathrm{\pi \pi \pi \pi }\right)$ $\mathrm{\pi ²\pi \pi }$ $\mathrm{\pi \pi \pi \pi }$ $\mathrm{\pi  \pi °\pi }$ $\mathrm{\pi \pi \pi \pi }$
Restrictions
 $\mathrm{\pi \pi \pi \pi \pi \pi \pi \pi }$$\left(\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi },\mathrm{\pi \pi \pi }\right)$
Purpose

Constraint the sum of the power of five of a set of domain variables. More precisely, let $\mathrm{\pi }$ denote the sum of the power of five of the variables of the $\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }$ collection (when the collection is empty the corresponding sum is equal to 0). Enforce the following constraint to hold: $\mathrm{\pi }\mathrm{\pi ²\pi \pi }\mathrm{\pi  \pi °\pi }$.

Example
$\left(β©1,1,2βͺ,=,34\right)$

The constraint holds since the condition ${1}^{5}+{1}^{5}+{2}^{5}=34$ is satisfied.

Typical
 $|\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }|>1$ $\mathrm{\pi \pi \pi \pi \pi }$$\left(\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }.\mathrm{\pi \pi \pi }\right)>1$ $\mathrm{\pi ²\pi \pi }\beta \left[=,<,\beta ₯,>,\beta €\right]$
Symmetry

Items of $\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }$ are permutable.

Arg. properties
• Contractible wrt. $\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }$ when $\mathrm{\pi ²\pi \pi }\beta \left[<,\beta €\right]$ and $\mathrm{\pi \pi \pi \pi \pi \pi }\left(\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }.\mathrm{\pi \pi \pi }\right)\beta ₯0$.

• Contractible wrt. $\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }$ when $\mathrm{\pi ²\pi \pi }\beta \left[\beta ₯,>\right]$ and $\mathrm{\pi \pi \pi ‘\pi \pi \pi }\left(\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }.\mathrm{\pi \pi \pi }\right)\beta €0$.

• Extensible wrt. $\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }$ when $\mathrm{\pi ²\pi \pi }\beta \left[\beta ₯,>\right]$ and $\mathrm{\pi \pi \pi \pi \pi \pi }\left(\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }.\mathrm{\pi \pi \pi }\right)\beta ₯0$.

• Extensible wrt. $\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }$ when $\mathrm{\pi ²\pi \pi }\beta \left[<,\beta €\right]$ and $\mathrm{\pi \pi \pi ‘\pi \pi \pi }\left(\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }.\mathrm{\pi \pi \pi }\right)\beta €0$.

• Aggregate: $\mathrm{\pi  \pi °\pi \pi Έ\pi °\pi ±\pi »\pi ΄\pi }\left(\mathrm{\pi \pi \pi \pi \pi }\right)$, $\mathrm{\pi ²\pi \pi }\left(\mathrm{\pi \pi }\right)$, $\mathrm{\pi  \pi °\pi }\left(+\right)$.