5.416. uses

DESCRIPTIONLINKSGRAPH
Origin

[BessiereHebrardHnichKiziltanWalsh05IJCAI]

Constraint

𝚞𝚜𝚎𝚜(πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚1,πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚2)

Arguments
πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚1πšŒπš˜πš•πš•πšŽπšŒπšπš’πš˜πš—(πšŸπšŠπš›-πšπšŸπšŠπš›)
πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚2πšŒπš˜πš•πš•πšŽπšŒπšπš’πš˜πš—(πšŸπšŠπš›-πšπšŸπšŠπš›)
Restrictions
πš–πš’πš—(1,|πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚1|)β‰₯πš–πš’πš—(1,|πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚2|)
πš›πšŽπššπšžπš’πš›πšŽπš(πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚1,πšŸπšŠπš›)
πš›πšŽπššπšžπš’πš›πšŽπš(πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚2,πšŸπšŠπš›)
Purpose

The set of values assigned to the variables of the collection of variables πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚2 is included within the set of values assigned to the variables of the collection of variables πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚1.

Example
(3,3,4,6,3,4,4,4,4)

The 𝚞𝚜𝚎𝚜 constraint holds since the set of values {3,4} assigned to the items of collection 〈3,4,4,4,4βŒͺ is included within the set of values {3,4,6} occurring within 〈3,3,4,6βŒͺ.

All solutions

FigureΒ 5.416.1 gives all solutions to the following non ground instance of the 𝚞𝚜𝚎𝚜 constraint: U 1 ∈[0,1], U 2 ∈[1,2], V 1 ∈[0,2], V 2 ∈[2,4], V 3 ∈[2,4], 𝚞𝚜𝚎𝚜(〈U 1 ,U 2 βŒͺ,〈V 1 ,V 2 ,V 3 βŒͺ).

Figure 5.416.1. All solutions corresponding to the non ground example of the 𝚞𝚜𝚎𝚜 constraint of the All solutions slot where identical values are coloured in the same way in both collections
ctrs/uses-1-tikz
Typical
|πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚1|>1
πš›πšŠπš—πšπšŽ(πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚1.πšŸπšŠπš›)>1
|πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚2|>1
πš›πšŠπš—πšπšŽ(πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚2.πšŸπšŠπš›)>1
|πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚1|≀|πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚2|
Symmetries
  • Items of πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚1 are permutable.

  • Items of πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚2 are permutable.

  • All occurrences of two distinct values in πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚1.πšŸπšŠπš› or πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚2.πšŸπšŠπš› can be swapped; all occurrences of a value in πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚1.πšŸπšŠπš› or πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚2.πšŸπšŠπš› can be renamed to any unused value.

Arg. properties
  • Contractible wrt. πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚2.

  • Extensible wrt. πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚1.

  • Aggregate: πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚1(πšžπš—πš’πš˜πš—), πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚2(πšžπš—πš’πš˜πš—).

Remark

It was shown in [BessiereHebrardHnichKiziltanWalsh05IJCAI] that, finding out whether a 𝚞𝚜𝚎𝚜 constraint has a solution or not is NP-hard. This was achieved by reduction from 3-SAT.

See also

generalisation: πšŒπš˜πš–πš–πš˜πš—.

implied by: 𝚞𝚜𝚎𝚍_πš‹πš’.

related: πš›πš˜πš˜πšπšœ.

Keywords

complexity: 3-SAT.

constraint arguments: constraint between two collections of variables.

final graph structure: acyclic, bipartite, no loop.

modelling: inclusion.

Arc input(s)

πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚1 πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚2

Arc generator
π‘ƒπ‘…π‘‚π·π‘ˆπΆπ‘‡β†¦πšŒπš˜πš•πš•πšŽπšŒπšπš’πš˜πš—(πšŸπšŠπš›πš’πšŠπš‹πš•πšŽπšœ1,πšŸπšŠπš›πš’πšŠπš‹πš•πšŽπšœ2)

Arc arity
Arc constraint(s)
πšŸπšŠπš›πš’πšŠπš‹πš•πšŽπšœ1.πšŸπšŠπš›=πšŸπšŠπš›πš’πšŠπš‹πš•πšŽπšœ2.πšŸπšŠπš›
Graph property(ies)
ππ’πˆππŠ=|πš…π™°πšπ™Έπ™°π™±π™»π™΄πš‚2|

Graph class
β€’ π™°π™²πšˆπ™²π™»π™Έπ™²
β€’ π™±π™Έπ™Ώπ™°πšπšƒπ™Έπšƒπ™΄
β€’ 𝙽𝙾_𝙻𝙾𝙾𝙿

Graph model

PartsΒ (A) andΒ (B) of FigureΒ 5.416.2 respectively show the initial and final graph associated with the Example slot. Since we use the ππ’πˆππŠ graph property, the sink vertices of the final graph are stressed with a double circle. Note that all the vertices corresponding to the variables that take values 9 or 2 were removed from the final graph since there is no arc for which the associated equality constraint holds.

Figure 5.416.2. Initial and final graph of the 𝚞𝚜𝚎𝚜 constraint
ctrs/usesA
(a)
ctrs/usesB
(b)

cleardoublepageeven